P3287 [SCOI2014]方伯伯的玉米田
首先可以证明,一定存在一种最优解,每次选择的区间结尾都是 \(n\)。因为如果某一个区间结尾不是 \(n\),将其替换成 \(n\) 仍然保持单调不下降。接着都按这个策略拔高玉米。
令 \(f_{i,j}\) 表示 \(1\sim i\) 这段前缀进行了 \(j\) 次操作,第 \(\boldsymbol{i}\) 株玉米不被拔掉,所能剩下最多的玉米。
\]
枚举 \(i\),剩下两个限制用二维树状数组维护即可。
有一个小细节,操作次数可能为 \(0\),扔进树状数组时需要加 \(1\)。
时间复杂度 \(O(nk\log k\log a)\)。
code:
#include<bits/stdc++.h>
using namespace std;
#define Max(x,y)((x)>(y)?x:y)
#define For(i,x,y)for(i=x;i<=(y);i++)
#define Down(i,x,y)for(i=x;i>=(y);i--)
#define lowbit(x)((x)&-(x))
int c[505][5505],a[10005],k,mx;
int sum(int x,int tmp)
{
int y,res=0;
while(x)
{
y=tmp;
while(y)res=Max(c[x][y],res),y-=lowbit(y);
x-=lowbit(x);
}
return res;
}
void add(int x,int tmp,int z)
{
int y;
while(x<=k+1)
{
y=tmp;
while(y<=mx+k)c[x][y]=Max(c[x][y],z),y+=lowbit(y);
x+=lowbit(x);
}
}
int main()
{
int n,i,j,tot,ans=0;
scanf("%d%d",&n,&k);
For(i,1,n)scanf("%d",&a[i]),mx=Max(mx,a[i]);
For(i,1,n)
Down(j,k,0)
{
tot=sum(j+1,a[i]+j)+1;
add(j+1,a[i]+j,tot);
ans=Max(ans,tot);
}
printf("%d",ans);
return 0;
}
P3287 [SCOI2014]方伯伯的玉米田的更多相关文章
- 【题解】Luogu P3287 [SCOI2014]方伯伯的玉米田
原题传送门 一眼就能看出来这是一道dp题 显而易见每次操作的右端点一定是n,每株玉米被拔高的次数随位置不下降 用f(i,j) 表示以第i 株玉米结尾它被拔高了j 次的最长序列长度. \(f(i,j)= ...
- 洛谷P3287 [SCOI2014]方伯伯的玉米田(树状数组)
传送门 首先要发现,每一次选择拔高的区间都必须包含最右边的端点 为什么呢?因为如果拔高了一段区间,那么这段区间对于它的左边是更优的,对它的右边会更劣,所以我们每一次选的区间都得包含最右边的端点 我们枚 ...
- 洛谷 P3287 - [SCOI2014]方伯伯的玉米田(BIT 优化 DP)
洛谷题面传送门 怎么题解区全是 2log 的做法/jk,这里提供一种 1log 并且代码更短(bushi)的做法. 首先考虑对于一个序列 \(a\) 怎样计算将其变成单调不降的最小代价.对于这类涉及区 ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田 dp树状数组优化
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 314 Solved: 132[Submit][Sta ...
- bzoj 3594: [Scoi2014]方伯伯的玉米田
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MB Submit: 1399 Solved: 627 [Submit][ ...
- [SCOI2014]方伯伯的玉米田
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- [SCOI2014]方伯伯的玉米田 题解(树状数组优化dp)
Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
随机推荐
- 实现图像上像素点与实际位置的GPS对应
作者有话说 这篇随笔是基于我自己完成的一个项目,这个项目虽然看起来较为简单,但是由于我本身不是学这个方向的,因此在做的过程中还是遇到了一些大大小小的问题.经过仔细研究并多次调试代码,终于把这个问题的原 ...
- 【总结】java基础
一.基础语法 1.数据类型 (1)基本数据类型:byte(1字节,-27~27-1),short(2字节,-215~215-1),int(4字节,-231~231-1),long(8字节,-263~2 ...
- 【应用程序见解 Application Insights】Application Insights 使用 Application Maps 构建请求链路视图
Applicaotn Insigths 使用 Application Maps 构建请求链路视图 构建系统时,请求的逻辑操作大多数情况下都需要在不同的服务,或接口中完成整个请求链路.一个请求可以经历 ...
- 用spring-retry注解自动触发重试方法
原文地址:https://www.jianshu.com/p/ee02d6125113 需求背景: 有些时候我们再调用一些第三方服务的时候,从第三方那边拉数据. 但是第三方服务不是100%稳定的,有些 ...
- SQL删除语句DROP、TRUNCATE、 DELETE 的区别
主要介绍了SQL删除语句DROP.TRUNCATE. DELETE 的区别,帮助大家更好的理解和学习sql语句,感兴趣的朋友可以了解下 DROP: 1 DROP TABLE test; 删除表test ...
- git引入_版本控制介绍
八个字形容git技术: 公司必备,一定要会 一.git概念: git是一个免费的,开源的分布式版本控制系统,可以快速高效的处理从小型到大型的项目 二.什么是版本控制: 版本控制是一种一个记录一个或若个 ...
- hive 下载和导入数据 hive -e
1. 从97导出dim_channel_terminal_flag表数据到txt(数据下载) hive -e 'select * from dim.dim_city' >> dim_cit ...
- 指针常量&常量指针&指向常量的指针常量
搞不懂不吃晚饭 (1)指针常量 指针常量是一个常量,但是是指针修饰的. 格式:int * const p; 例如 int a, b; int * const p = &a;//指针常量 //分 ...
- 牛客网-声网2020校招-通用C++笔试题-2020.9.3
1. 操作系统中两个进程争夺同一个资源会发生什么情况? 答:不一定死锁 解析:产生死锁的四个必要条件为 (1)互斥条件:一个资源每次只能被一个进程使用. (2)不可剥夺条件:进程已获得的资源,在未使用 ...
- 虚拟DOM与diff算法
虚拟DOM与diff算法 虚拟DOM 在DOM操作中哪怕我们的数据,发生了一丢丢的变化,也会被强制重建整预DOM树.这么做,涉及到很多元素的重绘和重排,导致性能浪费严重 只要实现按需更新页面上的元素即 ...