poj2411 Mondriaan's Dream (轮廓线dp、状压dp)
Mondriaan's Dream
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 17203 | Accepted: 9918 |
Description

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
Output

Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205
题意:
用 1 x 2 的矩形骨牌覆盖 h x w 的矩形,问有多少种不同的覆盖方法。
思路:
轮廓线dp(状压dp),以一个 w(矩形的宽) 位的二进制数(设为 k)表示一个状态,对应位上的 0 表示未覆盖的状态、1 表示已覆盖。
我们以从左到右、从上倒下的顺序做决策,要决策的点是 k 所表示的状态的下一个位置,以此点作为骨牌的右下角,
即:若我们在当前点竖着放置一块骨牌,它将覆盖当前点和正上方一点;若我们横着放置一块骨牌,它将覆盖当前点和左边的点。只有这样决策,才保证了是从之前的状态转移过来。
且以上述方式记录状态,k 的最高位正好是决策点的正上方一点,最低位是决策点的左边一点,并且我们每次决策都要保证最高位为 1 ,否则在以后的决策中都无法为其覆盖骨牌,也就无法达到全覆盖的要求。
这样,对于每个点都有三种决策方式:
- 放一块竖着的骨牌,要满足的条件有:k 的最高位不为 1 ;当前点不在第一行。则转移后的状态是 curk = k<<1|1,左移一位并将最低位覆盖;
- 放一块横着的骨牌,要满足的条件有:k 的最高位是1、最低位不试 1;当前点不在第一列。转移后的状态是 curk=(k|1)<<1|1,在覆盖最低位,左移一位后再覆盖最低位;
- 不妨骨牌,要满足的条件有: k 的最高位是 1;状态 curk = k<<1;
注:每次状态转移后都要清除高于 w 位的多余位,这些并不是状态的一部分;左移得到下一状态应该好理解。
代码:
#include<iostream>
#include<bitset>
#include<cstring>
using namespace std;
const long long maxn = 12, INF = 0x3f3f3f3f; long long dp[2][1<<maxn];
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0); long long h, w;
while(cin>>h>>w && (h+w))
{
memset(dp, 0, sizeof(dp));
long long cur=0, curk;
dp[cur][(1<<w)-1]=1;
for(int i=0; i<h; ++i)
{
for(int j=0; j<w; ++j)
{
cur=1-cur;
memset(dp[cur], 0, sizeof(dp[cur]));
for(int k=0; k<(1<<w); ++k)
{
if(i>0 && !(k&(1<<(w-1))))//放一块竖着的骨牌,覆盖当前位置和正上方的位置
{
curk=k<<1|1;
curk=curk&((1<<w)-1);//清除多余的位
dp[cur][curk]+=dp[1-cur][k];
}
if(j>0 && !(k&1) && (k&(1<<(w-1))))//放一块横着的骨牌,覆盖当前位置和左边的位置
{
curk=(k|1)<<1|1;
curk=curk&((1<<w)-1);
dp[cur][curk]+=dp[1-cur][k];
}
if((k&(1<<(w-1))))//不放
{
curk=k<<1;
curk=curk&((1<<w)-1);
dp[cur][curk]+=dp[1-cur][k];
}
}
}
}
cout<<dp[cur][(1<<w)-1]<<endl;
}
return 0;
}
poj2411 Mondriaan's Dream (轮廓线dp、状压dp)的更多相关文章
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)
传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...
- [转]状态压缩dp(状压dp)
状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...
- 状态压缩dp 状压dp 详解
说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...
- 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)
题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...
- POJ2411 Mondriaan's Dream 轮廓线dp
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少 ...
- 51nod 1673 树有几多愁(链表维护树形DP+状压DP)
题意 lyk有一棵树,它想给这棵树重标号. 重标号后,这棵树的所有叶子节点的值为它到根的路径上的编号最小的点的编号. 这棵树的烦恼值为所有叶子节点的值的乘积. lyk想让这棵树的烦恼值最大,你只需输出 ...
- BZOJ3836 [Poi2014]Tourism 【树形dp +状压dp】
题目链接 BZOJ3836 题解 显然这是个\(NP\)完全问题,此题的解决全仗任意两点间不存在节点数超过10的简单路径的性质 这意味着什么呢? \(dfs\)树深度不超过\(10\) \(10\)很 ...
- bzoj1076: [SCOI2008]奖励关(期望dp+状压dp)
1076: [SCOI2008]奖励关 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2989 Solved: 1557[Submit][Statu ...
随机推荐
- 微信小程序 | 模仿百思不得其姐
微信小程序 仿百思不得姐 设备 微信开发者工具 v1.02.1901230 扩展 修复了视频点击播放不流畅的问题 修复了视频的暂停够无法播放问题 优化了部分页面 接口 首页 http://api.bu ...
- 初学 React native | 环境搭建(在模拟器上运行)
我的电脑是windows 所以就以 windows上+Android 配置React native 环境 网上的安装教程非常多,我总结了一下,配置环境时出错原因主要是node java python ...
- 详解volatile关键字和原子引用
本篇看一下Volatile关键字和原子引用. 上图就是JUC包结构,总共分成三块 (1)java.util.concurrent:并发包基础类,包括阻塞队列,线程池相关类,线程安全Map等. (2)j ...
- hystrix(1) 概述
首先我们来讲一下hystrix解决什么问题.在大型分布式系统中经常会存在下面的几类问题: 1.大型分布式系统中,服务之间相互依赖,如果依赖的服务发生异常,那么当前服务也会出现异常,这样将会导致联级的服 ...
- Docker之简单操作
安装完Docker后,我们就可以与Docker进行交互来创建和管理容器等操作. 容器生命周期管理: 创建一个新的容器并运行一个命令 docker run [OPTIONS] IMAGE [COMMAN ...
- java 单例模式的几种写法
一.懒汉式 public class Singleton{ private static Singleton instance = null; private Singleton(){} public ...
- 《zookeeper原理与实践》笔记
第1章 分布式架构 1.1 分布式 分布式特点:分布性.对等性.并发性.缺乏全局时钟.故障总是会发生. 分布式问题:通讯异常.网络分区(脑裂).三态.节点故障. 1.2 ACID到CAP/BASE ...
- pwnable.kr-uaf-witeup
没错,这道题超纲了,代码调试能力很差很差. 一些相关小笔记. UAF是在内存释放后,原指针仍然指向此内存,可通过其他填充操作将此内存值设为指定的值,使得指针指向特定值. 分析程序.本程序中,可输入1. ...
- Kubernetes K8S之存储Secret详解
K8S之存储Secret概述与类型说明,并详解常用Secret示例 主机配置规划 服务器名称(hostname) 系统版本 配置 内网IP 外网IP(模拟) k8s-master CentOS7.7 ...
- Oracle 11gR2-Win 64bit
版本:Oracle 11gR2下载地址:http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.ht ...