Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2181    Accepted Submission(s): 816


Problem Description
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么??
你可决定了葱头一天能看多少校花哦
 

Input
输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100),

接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0

当n, m都为0的时候输入结束
 

Output
计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果
 

Sample Input

4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
 

Sample Output

2
0
1
3
 
这题可以用矩阵快速幂做,先把矩阵用邻接矩阵表示出来,如果i,j之间有路,那么a[i][j]就为1,否则为0.那么把两个a相乘,得到c,c[i][j]=Σa(i,k)*a(k,j),就是从i经过一个地方k走到j,那么a^k就是从i经过k个地方走到j的路线条数。

#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define MOD 1000
int gra[25][25]; struct matrix{
ll n,m,i;
ll data[99][99];
void init_danwei(){
for(i=0;i<n;i++){
data[i][i]=1;
}
}
}; matrix multi(matrix &a,matrix &b){
ll i,j,k;
matrix temp;
temp.n=a.n;
temp.m=b.m;
for(i=0;i<temp.n;i++){
for(j=0;j<temp.m;j++){
temp.data[i][j]=0;
}
}
for(i=0;i<a.n;i++){
for(k=0;k<a.m;k++){
if(a.data[i][k]>0){
for(j=0;j<b.m;j++){
temp.data[i][j]=(temp.data[i][j]+(a.data[i][k]*b.data[k][j])%MOD )%MOD;
}
}
}
}
return temp;
} matrix fast_mod(matrix &a,ll n){
matrix ans;
ans.n=a.n;
ans.m=a.m;
memset(ans.data,0,sizeof(ans.data));
ans.init_danwei();
while(n>0){
if(n&1)ans=multi(ans,a);
a=multi(a,a);
n>>=1;
}
return ans;
} int main()
{
ll n,m,i,j,c,d,k,T;
while(scanf("%lld%lld",&n,&m)!=EOF)
{
if(n==0 && m==0)break;
matrix a;
memset(a.data,0,sizeof(a.data));
a.n=a.m=n;
for(i=1;i<=m;i++){
scanf("%lld%lld",&c,&d);
a.data[c][d]=1;
}
scanf("%lld",&T);
while(T--)
{
scanf("%lld%lld%lld",&c,&d,&k);
matrix b;
memset(b.data,0,sizeof(b.data));
b.n=b.m=n;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
b.data[i][j]=a.data[i][j];
}
} matrix ans;
ans=fast_mod(b,k);
printf("%lld\n",ans.data[c][d]%MOD); } }
return 0;
}

hdu2157 How many ways??的更多相关文章

  1. HDU----(2157)How many ways??(快速矩阵幂)

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. HDU2157 How many ways??---(邻接矩阵,图论,矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Others ...

  3. hdu-2157 How many ways??(矩阵快速幂)

    题目链接: How many ways?? Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/O ...

  4. ☆ [HDU2157] How many ways?? 「矩阵乘法求路径方案数」

    传送门:>Here< 题意:给出一张有向图,问从点A到点B恰好经过k个点(包括终点)的路径方案数 解题思路 一道矩阵乘法的好题!妙哉~ 话说把矩阵乘法放在图上好神奇,那么跟矩阵唯一有关的就 ...

  5. HDU2157 How many ways矩阵再识

    春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室 ...

  6. [HDU2157]How many ways??(DP + 矩阵优化)

    传送门 k < 20 k这么小,随便dp一下就好了... dp[i][j][k]表示从i到j经过k个点的方案数 4重循环.. 但是如果k很大就不好弄了 把给定的图转为邻接矩阵,即A(i,j)=1 ...

  7. [日常摸鱼]HDU2157 How many ways??

    hhh我又开始水题目了 题意:给一张有向图,多次询问一个点到另一个点刚好走$k$步的方案数取模,点数很小 每个$a,b,k$的询问直接把邻接矩阵$map$自乘$k$次后$map[a][b]$就是答案了 ...

  8. How many ways?? - hdu2157(矩阵快速幂-模板)

    分析:求Map^k,刚开始没有用快速幂,TLE了   代码如下: =================================================================== ...

  9. How many ways??---hdu2157(矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2157   题意:有一个有向图,含有n个节点,m条边,Q个询问,每个询问有 s,t,p,求 s 到 t ...

随机推荐

  1. 【C++】《C++ Primer 》第十七章

    第十七章 标准库特殊设施 一.tuple类型 tuple是类似pair的模板,每个pair的成员类型都不相同,但每个pair都恰好有两个成员. 不同的tuple类型的成员类型也不相同,一个tuple可 ...

  2. SpringBoot魔法堂:@MatrixVariable参数注解使用详解

    前言 RFC3986定义URI的路径(Path)中可包含name-value片段,扩充了以往仅能通过查询字符串(Query String)设置可选参数的囧境. 假如现在需要设计一个用于"搜索 ...

  3. k8s之ServiceAccount

    导读 上一篇说了k8s的RBAC授权模式,今天就来简单看一下其中涉及到的ServiceAccount. 简介 k8s创建两套独立的账号系统,原因如下: (1)User账号给用户用,Service Ac ...

  4. (十五)xml模块

    xml是实现不同语言或程序之间进行数据交换的协议,跟json差不多,但json使用起来更简单,不过在json还没诞生的黑暗年代,大家只能选择用xml呀,至今很多传统公司如金融行业的很多系统的接口还主要 ...

  5. 【Linux】ssh设置了密钥,但ssh登陆的时候还需要输入密码

    ------------------------------------------------------------------------------------------------- | ...

  6. 【葵花宝典】一天掌握Kubernetes

    1.kubernetes介绍 kubernetes,简称K8s,是用8代替8个字符"ubernete"而成的缩写.是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kuber ...

  7. 记一次使用logmnr查找操作人流程

    经常遇到开发的需求,帮我查一下是谁修改了表里面的记录,是谁对表进行了DDL操作,此类问题可以使用logmnr解决 1.根据操作时间定位归档日志 SELECT name FROM V$ARCHIVED_ ...

  8. 安装python性能检测工具line_profiler

    line_profiler是一款监测python的CPU密集型性能问题的强大工具,可以对函数进行逐行分析,在linux上安装时一切正常,然而今天在win10 64位系统安装失败了 pip3 insta ...

  9. SAP 修改表和表中数据

    平时修改表中数据的方式有一下几种: 1.一般就是通过SE11或者是SE16进去,找到那条记录,然后将模式变成EDIT,然后修改保存. 2.通过SQL语句在程序中实现数据库表的修改操作 3.通过SE16 ...

  10. 为了更好的多线程性能,在对象创建或者更新时,若数据大于2047字节则 Python 的 GIL 会被释放。 执行计算密集型任务如压缩或哈希时释放 GIL

    hashlib - Secure hashes and message digests - Python 3.8.3 documentation https://docs.python.org/3.8 ...