题意:

让你从区间[a,b]里面找一个数x,在区间[c,d]里面找一个数y。题目上已经设定a=b=1了。问你能找到多少对GCD(x,y)=k。x=5,y=7和y=5,x=7是同一对

题解:

弄了半天才知道我得容斥原理方法卡时间了,我那个复杂度太高了。。。卧槽了

老版本的这里可以看:HDU - 4135 容斥原理

下面说一下复杂度低的容斥原理的思想

这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。 如果被计数的事物有A、B、C三类,那么,A类和B类和C类元素个数总和= A类元素个数+ B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

对于这道题[1,b]转化为[1,b/k]。[1,d]转化为[1,d/k]。这样的话只需要for循环i从1到b/k,找出来区间[1,d/k]内有多少数与i互质就行了

但是要注意题目说了x=5,y=7和y=5,x=7是同一对,那这就需要去重,这一点具体见代码

代码:

 1 #include<stdio.h>
2 #include<string.h>
3 #include<iostream>
4 #include<algorithm>
5 #include<math.h>
6 #include<queue>
7 using namespace std;
8 typedef long long ll;
9 const int maxn=100000;
10 ll v[maxn],index;
11 void oula(ll n) //获取n的所有质因数
12 {
13 index=0;
14 for(ll i=2; i<=sqrt(n); ++i)
15 {
16 if(n%i==0)
17 {
18 v[index++]=i;
19 n/=i;
20 while(n%i==0)
21 n/=i;
22 }
23 }
24 if(n>1)
25 v[index++]=n;
26 }
27 ll get_result(ll n)//容斥原理
28 {
29 ll ans=0;
30 for(ll i=1;i< (1<<index) ; i++)
31 {
32 ll ones=0,mult=1;
33 for(ll j=0;j<index;j++)
34 {
35 if(i & (1<<j))
36 {
37 ones++;
38 mult*=v[j];
39 }
40 }
41 if(ones&1)//奇数加,偶数减
42 ans+= n/mult;
43 else
44 ans-= n/mult;
45 }
46 return n-ans;
47 }
48 int main()
49 {
50 ll t,p=1;
51 scanf("%lld",&t);
52 while(t--)
53 {
54 ll a,b,c,d,k;
55 scanf("%lld%lld%lld%lld%lld",&a,&b,&c,&d,&k);
56 if(k==0) {printf("Case %lld: 0\n",p++);continue;}//k==0特判
57 if(b>d) swap(b,d);
58 d/=k,b/=k;
59 ll ans=0;
60 for(ll i=1;i<=b;i++)//1~b区间
61 {
62 oula(i);
63 ans+=get_result(b);
64 }
65 ans=(ans+1)/2; //这个除2就把那个 x=5,y=7和y=5,x=7是同一对 这个要求满足了
66 for(ll i=b+1;i<=d;i++)//b+1~d区间
67 {
68 oula(i);
69 ans+=get_result(b);
70 }
71 printf("Case %lld: %lld\n",p++,ans);
72 }
73 return 0;
74 }

GCD HDU - 1695 容斥原理(复杂度低的版本)的更多相关文章

  1. D - GCD HDU - 1695 -模板-莫比乌斯容斥

    D - GCD HDU - 1695 思路: 都 除以 k 后转化为  1-b/k    1-d/k中找互质的对数,但是需要去重一下  (x,y)  (y,x) 这种情况. 这种情况出现 x  ,y ...

  2. GCD HDU - 1695(容斥原理)

    要求从满足gcd(x, y) = k的对数,其中x属于[1, n], y属于[1, m] gcd(x, y) = k ==>gcd(x/k, y/k) =1 x/k属于[1, n/k], y/k ...

  3. hdu 1695 容斥原理或莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. GCD HDU - 1695 (欧拉 + 容斥)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. GCD HDU - 1695 莫比乌斯反演入门

    题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...

  6. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  7. HDU 5514 容斥原理

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  8. - Visible Trees HDU - 2841 容斥原理

    题意: 给你一个n*m的矩形,在1到m行,和1到n列上都有一棵树,问你站在(0,0)位置能看到多少棵树 题解: 用(x,y)表示某棵树的位置,那么只要x与y互质,那么这棵树就能被看到.不互质的话说明前 ...

  9. 低JAVA版本,高兼容性启动

    低JAVA版本,高兼容性启动 背景:部分操作系统java环境低版本,暂时无法更新最新版本,新系统需要使用较高版本Java环境 1.JAVA低版本不兼容当前应用 2.解压安装JAVA,无需配置环境变量 ...

随机推荐

  1. .net core 和 WPF 开发升讯威在线客服与营销系统:使用 WebSocket 实现访客端通信

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...

  2. 计算起始车站车费问题-JavaScript数组对象写法

    计算起始站车费 题目:深圳--60--广州--50-虎门--40- -中山--36-珠海一34-澳门一89一香港以上车票费用计算,如坐车深圳到广州60元,广州到虎门50元,深圳到虎门就是60+50-1 ...

  3. python—打开图像文件报错

    今天使用python打开一张图像文件的时候报错了 UnicodeDecodeError: 'gbk' codec can't decode byte 0xff in position 0: illeg ...

  4. 【葵花宝典】All-in-One模式安装KubeSphere

    1.准备 Linux 机器 2.google api受限下载 KubeKey export KKZONE=cn curl -sfL https://get-kk.kubesphere.io | VER ...

  5. oracle动态采样导致数据库出现大量cursor pin s wait on x等待

    生产库中,突然出现了大量的cursor pin s wait on x等待,第一反应是数据库出现了硬解析,查看最近的DDL语句,没有发现DDL.那么有可能这个sql是第一次进入 在OLTP高并发下产生 ...

  6. oracle常用hint添加

    1.视图添加索引 /* Formatted on 2020/1/6 下午 04:46:37 (QP5 v5.163.1008.3004) */ SELECT /*+index(VIEW_NAME.TA ...

  7. sentinel-实战

    sentinel-实战笔记 什么是Sentinel Sentinel是阿里开源的项目,提供了流量控制.熔断降级.系统负载保护等多个维度来保障服务之间的稳定性. Sentinel主要特性: 获取Sent ...

  8. Python执行程序实可视化_heartrate

    最近发现了一个Python程序执行的简单实时可视化神器,名字叫 heartrate,安装完运行可以看到下面这样的炫酷过程. 虽然很炫酷,但有点看不懂. 来解释下,左边的动态数字代表每行被触发的次数.变 ...

  9. JMETER-正则表达式提取与查看变量是否提取正确

    一.应用场景说明: 在一个线程组中,B请求需要使用A请求返回的数据,也就是常说的关联,将上一个请求的响应结果作为下一个请求的参数,则需要对A请求的响应报文使用后置处理器,其中最方便最常用的就是正则表达 ...

  10. jQuery 点击当前展开其他隐藏

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <meta name ...