Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) D. Divide and Sum (思维,数学,逆元)
题意:有一个长度为\(2n\)数组,从中选分别选\(n\)个元素出来组成两个序列\(p\)和\(q\),(\(p\)和\(q\)中只要有任意一个元素在\(a\)的原位置不同,就算一个新的情况),选完后对\(p\)非降序排序,对\(q\)非升序排序,然后求它们每个元素对应位置的差的绝对值之和\(re s=\sum^{n}_1 |x_i-y_i|\),问所有情况的res总和.
题解:观察样例,不难发现,因为\(p\)非降序,\(q\)非升序,所以无论\(p\)和\(q\)怎么选,它们的贡献永远是排序后的后\(n\)个数之和减前\(n\)个数之和,证明可以去看这个:https://www.luogu.com.cn/blog/taskkill-SB/solution-cf1444b
所以我们要求的答案就是\((\sum^n_1 |x_i-y_i|)*C^n_{2n}\).用逆元算一下即可.感觉自己对需要取模求逆元的题目还是十分的不熟练啊.
代码:
int n;
int a[N];
int fac[N],inv[N];
int ans; int fpow(int a,int k){
int res=1;
while(k){
if(k&1) res=res%mod*a%mod;
k>>=1;
a=a%mod*a%mod;
}
return res;
} signed main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n;
for(int i=1;i<=2*n;++i) cin>>a[i];
sort(a+1,a+1+2*n);
fac[0]=1;
for(int i=1;i<=2*n;++i){
fac[i]=fac[i-1]%mod*i%mod;
inv[i]=fpow(fac[i],mod-2);
}
int invC=fac[n<<1]*inv[n]%mod*inv[n]%mod;
for(int i=1;i<=n;++i){
ans=(ans-invC*a[i]%mod)%mod;
}
for(int i=n+1;i<=2*n;++i){
ans=(ans+invC*a[i]%mod)%mod;
} cout<<(ans+mod)%mod<<'\n'; return 0;
}
Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) D. Divide and Sum (思维,数学,逆元)的更多相关文章
- Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad)【ABCD】
比赛链接:https://codeforces.com/contest/1445 A. Array Rearrangment 题意 给定两个大小均为 \(n\) 的升序数组 \(a\) 和 \(b\) ...
- Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) C. Division (数学)
题意:有两个数\(p\)和\(q\),找到一个最大的数\(x\),使得\(p\ mod\ x=0\)并且\(x\ mod\ q\ne 0\). 题解:首先,如果\(p\ mod\ q\ne0\),那么 ...
- Codeforces Round #626 (Div. 2, based on Moscow Open Olympiad in Informatics)
A. Even Subset Sum Problem 题意 给出一串数,找到其中的一些数使得他们的和为偶数 题解 水题,找到一个偶数或者两个奇数就好了 代码 #include<iostream& ...
- Codeforces Round #626 (Div. 2, based on Moscow Open Olympiad in Informatics)部分(A~E)题解
(A) Even Subset Sum Problem 题解:因为n非常非常小,直接暴力枚举所有区间即可. #include<bits/stdc++.h> using namespace ...
- Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals)
Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) 说一点东西: 昨天晚上$9:05$开始太不好了,我在学校学校$9:40$放 ...
- Codeforces Round #500 (Div. 2) [based on EJOI]
Codeforces Round #500 (Div. 2) [based on EJOI] https://codeforces.com/contest/1013 A #include<bit ...
- Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2)
Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2) #include <bits/stdc++ ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- (AB)Codeforces Round #528 (Div. 2, based on Technocup 2019 Elimination Round
A. Right-Left Cipher time limit per test 1 second memory limit per test 256 megabytes input standard ...
随机推荐
- 【MySQL】汇总数据 - avg()、count()、max()、min()、sum()函数的使用
第12章 汇总数据 文章目录 第12章 汇总数据 1.聚集函数 1.1.AVG()函数 avg() 1.2.COUNT()函数 count() 1.3. MAX()函数 max() 1.4.MIN() ...
- 【Linux】快速创建文件的命令方法
[root@centos7 dir1]# ll total 0 -rw-r--r-- 1 root root 0 Aug 15 02:39 file1 -rw-r--r-- 1 root root 0 ...
- kubernets之服务发现
一 服务与pod的发现 1.1 服务发现pod是很显而易见的事情,通过简称pod的标签是否和服务的标签一致即可,但是pod是如何发现服务的呢?这个问题其实感觉比较多余,但是接下来你就可能不这么想了 ...
- 攻防世界 - Crypto(一)
base64: 根据题目base64可知编码方式,下载附件发现是一个txt文件,把内容用工具解码就彳亍了,即可得到flag, flag: cyberpeace{Welcome_to_new_World ...
- 【葵花宝典】一天掌握Docker
第1章Docker 概述 1-1 Docker是什么 没有虚拟化技术的原始年代 我们仔细想想,在没有计算虚拟化技术的"远古"年代,如果我们要部署一个应用程序(Application ...
- 【九阳神功】Nessus 8_VM不限IP及AWVS破解版合体部署
Nessus 8下载地址: https://moehu-my.sharepoint.com/personal/ximcx_moebi_org/_layouts/15/download.aspx?Sou ...
- oracle视图添加hint
/* Formatted on 2019/8/6 下午 02:51:21 (QP5 v5.163.1008.3004) */ SELECT DB FROM ( SELECT /*+ index(A.r ...
- 使用modify修改内表
modify修改内表,有这样一种方式,MODIFY TABLE itab FROM wa [TRANSPORTING ..]. 然后这里的内表itab是有条件的,这个itab必须要有table key ...
- RocketMQ在linx安装及其有关问题解决
Linx安装和使用: rocketmq官网:http://rocketmq.apache.org/ 首先安装JDK(推荐使用JDK1.8),并配置环境变量 下载rocketmq压碎包并解压到指定目录 ...
- linux下安装zsh和p10k的详细过程
目录 下载zsh 下载oh-my-zsh 切换shell 下载p10k 下载zsh sudo apt-get install zsh sudo apt-get install git 下载oh-my- ...