• 题意:有一个长度为\(2n\)数组,从中选分别选\(n\)个元素出来组成两个序列\(p\)和\(q\),(\(p\)和\(q\)中只要有任意一个元素在\(a\)的原位置不同,就算一个新的情况),选完后对\(p\)非降序排序,对\(q\)非升序排序,然后求它们每个元素对应位置的差的绝对值之和\(re s=\sum^{n}_1 |x_i-y_i|\),问所有情况的res总和.

  • 题解:观察样例,不难发现,因为\(p\)非降序,\(q\)非升序,所以无论\(p\)和\(q\)怎么选,它们的贡献永远是排序后的后\(n\)个数之和减前\(n\)个数之和,证明可以去看这个:https://www.luogu.com.cn/blog/taskkill-SB/solution-cf1444b

    所以我们要求的答案就是\((\sum^n_1 |x_i-y_i|)*C^n_{2n}\).用逆元算一下即可.感觉自己对需要取模求逆元的题目还是十分的不熟练啊.

  • 代码:

    int n;
    int a[N];
    int fac[N],inv[N];
    int ans; int fpow(int a,int k){
    int res=1;
    while(k){
    if(k&1) res=res%mod*a%mod;
    k>>=1;
    a=a%mod*a%mod;
    }
    return res;
    } signed main() {
    ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    cin>>n;
    for(int i=1;i<=2*n;++i) cin>>a[i];
    sort(a+1,a+1+2*n);
    fac[0]=1;
    for(int i=1;i<=2*n;++i){
    fac[i]=fac[i-1]%mod*i%mod;
    inv[i]=fpow(fac[i],mod-2);
    }
    int invC=fac[n<<1]*inv[n]%mod*inv[n]%mod;
    for(int i=1;i<=n;++i){
    ans=(ans-invC*a[i]%mod)%mod;
    }
    for(int i=n+1;i<=2*n;++i){
    ans=(ans+invC*a[i]%mod)%mod;
    } cout<<(ans+mod)%mod<<'\n'; return 0;
    }

Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) D. Divide and Sum (思维,数学,逆元)的更多相关文章

  1. Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad)【ABCD】

    比赛链接:https://codeforces.com/contest/1445 A. Array Rearrangment 题意 给定两个大小均为 \(n\) 的升序数组 \(a\) 和 \(b\) ...

  2. Codeforces Round #680 (Div. 2, based on Moscow Team Olympiad) C. Division (数学)

    题意:有两个数\(p\)和\(q\),找到一个最大的数\(x\),使得\(p\ mod\ x=0\)并且\(x\ mod\ q\ne 0\). 题解:首先,如果\(p\ mod\ q\ne0\),那么 ...

  3. Codeforces Round #626 (Div. 2, based on Moscow Open Olympiad in Informatics)

    A. Even Subset Sum Problem 题意 给出一串数,找到其中的一些数使得他们的和为偶数 题解 水题,找到一个偶数或者两个奇数就好了 代码 #include<iostream& ...

  4. Codeforces Round #626 (Div. 2, based on Moscow Open Olympiad in Informatics)部分(A~E)题解

    (A) Even Subset Sum Problem 题解:因为n非常非常小,直接暴力枚举所有区间即可. #include<bits/stdc++.h> using namespace ...

  5. Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals)

    Codeforces Round #403 (Div. 2, based on Technocup 2017 Finals) 说一点东西: 昨天晚上$9:05$开始太不好了,我在学校学校$9:40$放 ...

  6. Codeforces Round #500 (Div. 2) [based on EJOI]

    Codeforces Round #500 (Div. 2) [based on EJOI] https://codeforces.com/contest/1013 A #include<bit ...

  7. Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2)

    Codeforces Round #517 (Div. 2, based on Technocup 2019 Elimination Round 2) #include <bits/stdc++ ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  9. (AB)Codeforces Round #528 (Div. 2, based on Technocup 2019 Elimination Round

    A. Right-Left Cipher time limit per test 1 second memory limit per test 256 megabytes input standard ...

随机推荐

  1. 【MySQL】汇总数据 - avg()、count()、max()、min()、sum()函数的使用

    第12章 汇总数据 文章目录 第12章 汇总数据 1.聚集函数 1.1.AVG()函数 avg() 1.2.COUNT()函数 count() 1.3. MAX()函数 max() 1.4.MIN() ...

  2. 【Linux】快速创建文件的命令方法

    [root@centos7 dir1]# ll total 0 -rw-r--r-- 1 root root 0 Aug 15 02:39 file1 -rw-r--r-- 1 root root 0 ...

  3. kubernets之服务发现

    一  服务与pod的发现 1.1  服务发现pod是很显而易见的事情,通过简称pod的标签是否和服务的标签一致即可,但是pod是如何发现服务的呢?这个问题其实感觉比较多余,但是接下来你就可能不这么想了 ...

  4. 攻防世界 - Crypto(一)

    base64: 根据题目base64可知编码方式,下载附件发现是一个txt文件,把内容用工具解码就彳亍了,即可得到flag, flag: cyberpeace{Welcome_to_new_World ...

  5. 【葵花宝典】一天掌握Docker

    第1章Docker 概述 1-1 Docker是什么 没有虚拟化技术的原始年代 我们仔细想想,在没有计算虚拟化技术的"远古"年代,如果我们要部署一个应用程序(Application ...

  6. 【九阳神功】Nessus 8_VM不限IP及AWVS破解版合体部署

    Nessus 8下载地址: https://moehu-my.sharepoint.com/personal/ximcx_moebi_org/_layouts/15/download.aspx?Sou ...

  7. oracle视图添加hint

    /* Formatted on 2019/8/6 下午 02:51:21 (QP5 v5.163.1008.3004) */ SELECT DB FROM ( SELECT /*+ index(A.r ...

  8. 使用modify修改内表

    modify修改内表,有这样一种方式,MODIFY TABLE itab FROM wa [TRANSPORTING ..]. 然后这里的内表itab是有条件的,这个itab必须要有table key ...

  9. RocketMQ在linx安装及其有关问题解决

    Linx安装和使用: rocketmq官网:http://rocketmq.apache.org/ 首先安装JDK(推荐使用JDK1.8),并配置环境变量 下载rocketmq压碎包并解压到指定目录 ...

  10. linux下安装zsh和p10k的详细过程

    目录 下载zsh 下载oh-my-zsh 切换shell 下载p10k 下载zsh sudo apt-get install zsh sudo apt-get install git 下载oh-my- ...