CF R 639 div2 F Review 贪心 二分
LINK:Résumé Review
这道题让我眼前一亮没想到二分这么绝.
由于每个\(b_i\)都是局部的 全局只有一个限制\(\sum_{i=1}^nb_i=k\)
所以dp没有什么用 我们只需要满足他们的累和=k即可。
容易想到每次给b加1带来的贡献是 \(\Delta_x=a_i-3{b_i}^2-3b_i-1\)
开一个堆每次取出最大值 这样显然是最优的。
不过复杂度为klogn k足足有1e14这么大。
一个绝妙的想法 每次增加的值是递减的 那么第k次增加的值也是固定的。
可以进行二分第k次增加的值 此时我们可以快速算出之前的所有的\(b_i\) 至此从而判定答案是否是最优的。
正确性比较显然 值得一提的是 二分出来之后 我的处理办法是 让每个b都达到临界点 即再增加1就会<=当前mid
这样的话 对于二分出小于答案的那些都会不合法 最后唯一被卡在最左边界的就是答案了。
值得一提的是 求出每个b 可以直接解方程 也可以采用二分 不过解方程之后调整次数我难以把握 所以再接了一个二分.
不过前者复杂度可以认为是nlogn 后者则是nlog^2.
/一个显然的做法 开堆贪心 klogn
//在这个过程中可以发现每次增加的值递减 可以二分出来这个东西.
const ll MAXN=100010;
ll n,k,ww;
ll a[MAXN],b[MAXN];
inline ll f(ll a,ll b){return a==b?-INF:a-3*b*(b+1)-1;}
//二分出来的东西要尽可能的<=x
inline ll calc(ll a,ll x)//询问当递减的值为x时的bi的值.
{
ll l=0,r=a;
while(l+1<r)
{
ll mid=(l+r)>>1;
if(f(a,mid)>x)l=mid;
else r=mid;
}
if(f(a,r)>x)return min(r+1,a);
return r;
}
inline ll check(ll x)//递减的值为x.
{
ww=0;
rep(1,n,i)
{
b[i]=calc(a[i],x);
ww+=b[i];
}
return ww<k;
}
signed main()
{
freopen("1.in","r",stdin);
ll l=0,r=0;
get(n);get(k);
rep(1,n,i)get(a[i]),r=max(r,f(a[i],0)),l=min(l,f(a[i],a[i]-1));
while(l+1<r)
{
ll mid=(l+r)>>1;
if(check(mid))r=mid;
else l=mid;
}
if(check(l))r=l;
check(r);k-=ww;
rep(1,n,i)if(k>0&&b[i]<a[i]&&f(a[i],b[i])==r)++b[i],--k;
rep(1,n,i)put_(b[i]);return 0;
}
CF R 639 div2 F Review 贪心 二分的更多相关文章
- CF R 635 div2 1337D Xenia and Colorful Gems 贪心 二分 双指针
LINK:Xenia and Colorful Gems 考试的时候没想到一个很好的做法. 赛后也有一个想法. 可以考虑答案的样子 x,y,z 可以发现 一共有 x<=y<=z,z< ...
- CF R 630 div2 1332 F Independent Set
LINK:Independent Set 题目定义了 独立集和边诱导子图.然而和题目没有多少关系. 给出一棵树 求\(\sum_{E'\neq \varnothing,E'\subset E}w(G( ...
- E CF R 85 div2 1334E. Divisor Paths
LINK:Divisor Paths 考试的时候已经想到结论了 可是质因数分解想法错了 导致自闭. 一张图 一共有D个节点 每个节点x会向y连边 当且仅当y|x,x/y是一个质数. 设f(d)表示d的 ...
- CF R 632 div2 1333F Kate and imperfection
赛后看了半天题 才把题目看懂 英语水平极差. 意思:定义一个集合S的权值为max{gcd(a,b)};且\(a\neq b\) 这个集合可以从1~n中选出一些数字 求出当集合大小为k时的最小价值. 无 ...
- CF R 632 div2 1333D Challenges in school №41
LINK:Challenges in school №41 考试的时候读错题了+代码UB了 所以wa到自闭 然后放弃治疗. 赛后发现UB的原因是 scanf读int类型的时候 宏定义里面是lld的类型 ...
- cf 442 div2 F. Ann and Books(莫队算法)
cf 442 div2 F. Ann and Books(莫队算法) 题意: \(给出n和k,和a_i,sum_i表示前i个数的和,有q个查询[l,r]\) 每次查询区间\([l,r]内有多少对(i, ...
- The 14th Zhejiang Provincial Collegiate Programming Contest Sponsored by TuSimple - F 贪心+二分
Heap Partition Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge A sequence S = { ...
- Codeforces #452 Div2 F
#452 Div2 F 题意 给出一个字符串, m 次操作,每次删除区间 \([l,r]\) 之间的字符 \(c\) ,输出最后得到的字符串. 分析 通过树状数组和二分,我们可以把给定的区间对应到在起 ...
- bzoj 1178: [Apio2009]CONVENTION会议中心(少见做法掉落!)【贪心+二分】
数组若干+手动二分一个的算法,bzoj rank8 ===============================废话分割线=================================== 我我 ...
随机推荐
- 设置overflow:hiden行内元素会发生偏移的现象
父级元素包含几个行内元素 <div id="box"> <p> <span>按钮</span> <span>测试文字文字 ...
- 3W字干货深入分析基于Micrometer和Prometheus实现度量和监控的方案
前提 最近线上的项目使用了spring-actuator做度量统计收集,使用Prometheus进行数据收集,Grafana进行数据展示,用于监控生成环境机器的性能指标和业务数据指标.一般,我们叫这样 ...
- 最全MySQL数据库表的查询操作
序言 1.MySQL表操作(创建表,查询表结构,更改表字段等), 2.MySQL的数据类型(CHAR.VARCHAR.BLOB,等), 本节比较重要,对数据表数据进行查询操作,其中可能大家不熟悉的就对 ...
- Spring IoC @Autowired 注解详解
前言 本系列全部基于 Spring 5.2.2.BUILD-SNAPSHOT 版本.因为 Spring 整个体系太过于庞大,所以只会进行关键部分的源码解析. 我们平时使用 Spring 时,想要 依赖 ...
- Hyperledger Fabric 2.1 搭建教程
Hyperledger Fabric 2.1 搭建教程 环境准备 版本 Ubuntu 18.04 go 1.14.4 fabric 2.1 fabric-sample v1.4.4 nodejs 12 ...
- C++各种格式转换
int main() { stringstream sstr; //--------int转string----------- int a=100; string st ...
- iOS刨根问底-深入理解GCD
概述 做过iOS开发的同学相信对于GCD(Grand Central Dispatch)并不陌生,因为在平时多线程开发过程中GCD应该是使用最多的技术甚至它要比它的上层封装NSOperation还要常 ...
- Pop!_OS下安装C++编程工具
Pop!_OS下C++编程 #0x0 Visual Studio Code #0x1 C++ 0x11 code::blocks #0x0 Visual Studio Code 下载安装vscode ...
- MYSQL 之 JDBC(十四):批量处理JDBC语句提高处理效率
1.当需要成批插入或者更新记录时.可以采用java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处理.通常情况下比单独提交处理更有效率. 2.JDBC的批量处理语句包括下面两个方法: ad ...
- 数据可视化之DAX篇(五) 使用PowerBI的这两个函数,灵活计算各种占比
https://zhuanlan.zhihu.com/p/57861350 计算个体占总体的比例是一个很常见的分析方式,它很简单,就是两个数字相除,但是当需要计算的维度.总体的范围发生动态变化时,如何 ...