折半搜索(meet in the middle)
折半搜索(meet in the middle)
我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃.
由于子树分支是指数性增长,所以我们考虑将其折半优化;
前言
这个知识点曾经在模拟赛中出现过,所以这里稍微提一下;
讲的很浅显,但是不要D讲者;
入门
dfs搜索树是指数性增长,如果将指数减少一半,就将会有量的飞跃,所以在遇见暴力枚举太大时,我们可以考虑这种算法;
总体思想即,dfs搜素通常从一个点出发,遍历所有深度,那么我们考虑将深度减半,从两个点出发,然后分别统计两边dfs时的信息,整合即可;
注意
该算法能否使用的关键是整合,两个深度是否能整合在一起需要思考;
了解
我们通过一道例题来讲解;
有一个体积为 \(m\) \((m<=1e18)\) 的背包,有 \(n\) \((n<=40)\) 个物品,问装背包有多少种方案.
若 \(m\) 较小时,该题即一个裸的背包,但本题 \(m<=1e18\) 背包就会不可做 (我不会) ;
那么考虑最基础的方法,暴力枚举每一种情况,然后统计即可.
直接枚举会导致超时,我们可以考虑双向搜索,将物品截半,将第一次搜索时的情况存下来,排序,第二次搜索时,找到一个结果,二分查找第一次的情况,计数即可;
给 \(n\) \((n<=20)\) 个数,从中任意选出一些数,使这些数能分成和相等的两组。
求方案数.
我们同样考虑两遍dfs,分别整理出两次搜索的结果,但是整合时有些麻烦;
整合时,我们可以暴力计数,考虑到这些数的随机性,所以期望得分 \(100\) ,但是如果出题人精心手造数据,就会有些凉凉;
考虑每种情况只会有 \(1\) 的贡献,那么我们将 \(2^{20}\) 种情况分别跑出来,用两次dfs储存的结果判断是否可行即可;
总结
我们面对一些其他算法很难处理的问题,要留住我们的本心 (根) ,优化暴力搜索,也许也会得到一个不错的复杂度.
折半搜索(meet in the middle)的更多相关文章
- Editing a Book 搜索 + meet in the middle
我们可以发现最多只会进行5次操作. 由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可. 如果4次仍然不可行,则只有可能是5次.所以正反最多只需要搜2层 cod ...
- Meet in the middle
搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet ...
- 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)
[Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...
- 「笔记」折半搜索(Meet in the Middle)
思想 先搜索前一半的状态,再搜索后一半的状态,再记录两边状态相结合的答案. 暴力搜索的时间复杂度通常是 \(O(2^{n})\) 级别的.但折半搜索可以将时间复杂度降到 \(O(2 \times 2^ ...
- 【BZOJ4800】[CEOI2015 Day2]世界冰球锦标赛 (折半搜索)
[CEOI2015 Day2]世界冰球锦标赛 题目描述 译自 CEOI2015 Day2 T1「Ice Hockey World Championship」 今年的世界冰球锦标赛在捷克举行.\(Bob ...
- 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)
A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...
- Meet in the middle学习笔记
Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...
- 【BZOJ4800】[Ceoi2015]Ice Hockey World Championship Meet in the Middle
[BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一 ...
- Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)
目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...
随机推荐
- #2020征文-开发板# 用鸿蒙开发AI应用(三)软件篇
目录: 前言 HarmonyOS 简介 DevEco Device Tool(windows下) 获取源码(切换到ubuntu) 烧录程序(切换回windows) 前言上一篇,我们在 Win10 上用 ...
- ASP.NET Core 3.1 中间件
参考微软官方文档 : https://docs.microsoft.com/zh-cn/aspnet/core/fundamentals/middleware/?view=aspnetcore-3.1 ...
- Go语言从入门到放弃(设置 go get 为国内源)
前言 Go语言学到 Gin 框架了, 其实每天学习是比较辛苦的事情, 坚持下去! 在使用 Go 过程中发现, 最无奈的是Go的一些模块下不下来, 即便挂了V, 油管2k不卡的那种, 依旧是 time ...
- Spring Security OAuth2.0认证授权五:用户信息扩展到jwt
历史文章 Spring Security OAuth2.0认证授权一:框架搭建和认证测试 Spring Security OAuth2.0认证授权二:搭建资源服务 Spring Security OA ...
- (二)数据源处理5-excel数据转换实战(上)
把excel_oper02.py 里面实现的:通过字典的方式获取所有excel数据.放进utils: ️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️️ utils: def get_al ...
- 【Web】HTML入门小结
文章目录 HTML? HTML 初识元素/标签 HTML语义化标签 标题 段落 font HTMl链接 HTML图像 HTML列表 HTML div HTML 块级元素与行内元素 HTML常用带格式作 ...
- JAVA编程中button按钮,actionlistener和mouseClicked区别
在java的编程中,对于按钮button 有两个事件: 1.actionPerformed 2.mouseClicked 区别: actionPerformed:一般事件,仅侦听鼠标左键的单击事件,右 ...
- 浅谈JavaScript代码性能优化2
一.减少判断层级 从下图代码中可以明显看出,同样的效果判断层级的减少可以优化性能 二.减少作用域链查找层级 简单解释下,下图中第一个运行foo函数,bar函数内打印name,bar作用域内没有name ...
- EL&Filter&Listener:EL表达式和JSTL,Servlet规范中的过滤器,Servlet规范中的监听器,观察着设计模式,监听器的使用,综合案例学生管理系统
EL&Filter&Listener-授课 1 EL表达式和JSTL 1.1 EL表达式 1.1.1 EL表达式介绍 *** EL(Expression Language):表达式语言 ...
- ES6在工作中会用到的核心知识点讲解
一.var, let, const 谈到ES6,估计大家首先肯定会想到var,let,const 咱就先谈谈这三者的区别 var a = 3; { var a = 4; } console.log(a ...