折半搜索(meet in the middle)

​ 我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃.

​ 由于子树分支是指数性增长,所以我们考虑将其折半优化;

前言

​ 这个知识点曾经在模拟赛中出现过,所以这里稍微提一下;

​ 讲的很浅显,但是不要D讲者;

入门

​ dfs搜索树是指数性增长,如果将指数减少一半,就将会有量的飞跃,所以在遇见暴力枚举太大时,我们可以考虑这种算法;

​ 总体思想即,dfs搜素通常从一个点出发,遍历所有深度,那么我们考虑将深度减半,从两个点出发,然后分别统计两边dfs时的信息,整合即可;

注意

​ 该算法能否使用的关键是整合,两个深度是否能整合在一起需要思考;

了解

​ 我们通过一道例题来讲解;

​ 有一个体积为 \(m\) \((m<=1e18)\) 的背包,有 \(n\) \((n<=40)\) 个物品,问装背包有多少种方案.

​ 若 \(m\) 较小时,该题即一个裸的背包,但本题 \(m<=1e18\) 背包就会不可做 (我不会) ;

​ 那么考虑最基础的方法,暴力枚举每一种情况,然后统计即可.

​ 直接枚举会导致超时,我们可以考虑双向搜索,将物品截半,将第一次搜索时的情况存下来,排序,第二次搜索时,找到一个结果,二分查找第一次的情况,计数即可;

给 \(n\) \((n<=20)\) 个数,从中任意选出一些数,使这些数能分成和相等的两组。

求方案数.

​ 我们同样考虑两遍dfs,分别整理出两次搜索的结果,但是整合时有些麻烦;

​ 整合时,我们可以暴力计数,考虑到这些数的随机性,所以期望得分 \(100\) ,但是如果出题人精心手造数据,就会有些凉凉;

​ 考虑每种情况只会有 \(1\) 的贡献,那么我们将 \(2^{20}\) 种情况分别跑出来,用两次dfs储存的结果判断是否可行即可;

总结

​ 我们面对一些其他算法很难处理的问题,要留住我们的本心 (根) ,优化暴力搜索,也许也会得到一个不错的复杂度.

折半搜索(meet in the middle)的更多相关文章

  1. Editing a Book 搜索 + meet in the middle

    我们可以发现最多只会进行5次操作. 由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可. 如果4次仍然不可行,则只有可能是5次.所以正反最多只需要搜2层 cod ...

  2. Meet in the middle

    搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet ...

  3. 【BZOJ 2679】[Usaco2012 Open]Balanced Cow Subsets(折半搜索+双指针)

    [Usaco2012 Open]Balanced Cow Subsets 题目描述 给出\(N(1≤N≤20)\)个数\(M(i) (1 <= M(i) <= 100,000,000)\) ...

  4. 「笔记」折半搜索(Meet in the Middle)

    思想 先搜索前一半的状态,再搜索后一半的状态,再记录两边状态相结合的答案. 暴力搜索的时间复杂度通常是 \(O(2^{n})\) 级别的.但折半搜索可以将时间复杂度降到 \(O(2 \times 2^ ...

  5. 【BZOJ4800】[CEOI2015 Day2]世界冰球锦标赛 (折半搜索)

    [CEOI2015 Day2]世界冰球锦标赛 题目描述 译自 CEOI2015 Day2 T1「Ice Hockey World Championship」 今年的世界冰球锦标赛在捷克举行.\(Bob ...

  6. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  7. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  8. 【BZOJ4800】[Ceoi2015]Ice Hockey World Championship Meet in the Middle

    [BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一 ...

  9. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

随机推荐

  1. MongoDB备份(mongoexport)与恢复(mongoimport)

    1.备份恢复工具介绍: mongoexport/mongoimport mongodump/mongorestore(本文未涉及) 2.备份工具区别在哪里? 2.1 mongoexport/mongo ...

  2. LeetCode278 第一个错误的版本

    你是产品经理,目前正在带领一个团队开发新的产品.不幸的是,你的产品的最新版本没有通过质量检测.由于每个版本都是基于之前的版本开发的,所以错误的版本之后的所有版本都是错的. 假设你有 n 个版本 [1, ...

  3. 剑指offer 面试题4:二维数组中的查找

    题目描述 在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数 ...

  4. LeetCode 371两数之和

    题目描述: 不使用运算符 + 和 - ​​​​​​​,计算两整数 ​​​​​​​a .b ​​​​​​​之和. 思路: 既然不能使用运算符操作就要考虑到,位运算的加法. 加法有进位的时候和不进位的时候 ...

  5. Spark Streaming处理Flume数据练习

    把Flume Source(netcat类型),从终端上不断给Flume Source发送消息,Flume把消息汇集到Sink(avro类型),由Sink把消息推送给Spark Streaming并处 ...

  6. 跨站脚本漏洞(XSS)基础

    什么是跨站脚本攻击XSS 跨站脚本(cross site script),为了避免与样式css混淆所以简称为XSS,是一种经常出现在web应用中的计算机安全漏洞,也是web中最主流的攻击方式. 什么是 ...

  7. ctfhub技能树—sql注入—Refer注入

    手注 查询数据库名 查询数据表名 查询字段名 查询字段信息 脚本(from 阿狸) #! /usr/bin/env python # _*_ coding:utf-8 _*_ url = " ...

  8. RWCTF2020 DBaaSadge 复现

    数据库题目 2020RWCTF DBaaSadge WP 这是一个很有意思的题目,难到让我绝望,跟着大佬smity的思路跑一下,求大佬抱抱. https://mp.weixin.qq.com/s/jv ...

  9. oracle创建恢复编录(recovery catalog)

    1.在要作为恢复编录的数据库创建用户 create user rman identified by oracle default tablespace system temporary TABLESP ...

  10. Lakehouse: 统一数据仓库和高级分析的新一代开放平台

    1. 摘要 数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性 基于开放的数据格式,如Parquet: 机器学习和数据科学将被作为头等公民支持: 提供卓越 ...