【HEOI2015】公约数数列 题解(分块)
前言:毒瘤数据结构题,半个下午都在搞它了……
---------------------------
题目大意:给定一个长度为$n$的序列,有两种操作:1.把$a_x$的值改成$y$。2.求一个最小的$p$使得$gcd(a_0,a_1,\cdots ,a_p)*XOR(a_0,a_1,\cdots ,a_p)=x$。
------------------------------
这种数据结构题一般只能用分块解决。线段树什么的不得T飞……
对于每个块,我们维护块内的$gcd$和$xor$和,还要记录以每个块的左端点为左端点的$xor$前缀和。
修改的时候直接$\sqrt n$暴力把所属块内的信息重新修改。
重点是查询。我们维护一个$pregcd$和$prexo$表示已经询问过的部分的$gcd$和$xor$和。有两种情况:
1.如果$gcd(pregcd,gcd[i])=pregcd$,那么二分查找块内可能符合条件的$p$。可以参考代码来理解。
2.如果不相等,那么暴力查找块内可能的$p$。
有一个性质:$A xor B=C$,那么$C xor B=A$。可以利用这个性质进行查询。
时间复杂度$O(n\sqrt n \log n)$。
代码:
/*记录每个块内的gcd,xor和;记录以每个块左端点为左端点的前缀xor和*/
#include<bits/stdc++.h>
#define int long long
using namespace std;
int gcd[],sumxo[],n,m,a[],block,tot,pregcd,prexo;
struct node{int sum,id;}xo[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline int GCD(int x,int y){if (!y) return x;return GCD(y,x%y);}
bool cmp(node x,node y){if(x.sum==y.sum) return x.id<y.id;return x.sum<y.sum;}
inline void build(int i)
{
gcd[(i-)*block+]=sumxo[(i-)*block+]=a[(i-)*block+];
xo[(i-)*block+]=(node){sumxo[(i-)*block+],(i-)*block+};
for (int j=(i-)*block+;j<=min(n,i*block);j++)
{
gcd[j]=GCD(gcd[j-],a[j]);
sumxo[j]=sumxo[j-]^a[j];
xo[j]=(node){sumxo[j],j};
}
sort(xo+(i-)*block+,xo+min(n,i*block)+,cmp);
}
inline int half(int l,int r,int x)
{
int mid,res=l;
while(l<=r)
{
mid=(l+r)>>;
if (xo[mid].sum>=x) res=mid,r=mid-;
else l=mid+;
}
return res;
}
inline int query(int x)
{
int ans=-;
pregcd=a[],prexo=;
for (int i=;i<=tot&&ans==-;i++)
{
if (GCD(pregcd,gcd[min(n,i*block)])==pregcd)
{
if (x%pregcd==)
{
int k=(x/pregcd)^prexo;
int pos=half((i-)*block+,min(n,i*block),k);
if(xo[pos].sum==k)
{
ans=xo[pos].id;
break;
}
}
pregcd=GCD(pregcd,gcd[min(n,i*block)]),prexo^=sumxo[min(n,i*block)];
}
else
{
for (int j=(i-)*block+;j<=min(n,i*block);j++)
{
pregcd=GCD(pregcd,a[j]);prexo^=a[j];
if (pregcd*prexo==x){
ans=j;
break;
}
}
if (ans!=-) break;
}
}
return ans;
}
signed main()
{
n=read();block=sqrt(n);
tot=n/block;if (n%block) tot++;
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=tot;i++) build(i);
m=read();
while(m--)
{
string s;cin>>s;
if (s[]=='M')
{
int x=read(),y=read();x++;
a[x]=y;
build((x-)/block+);
}
else
{
int x=read();
int s=query(x);
if (s==-) printf("no\n");
else printf("%lld\n",s-);
}
}
return ;
}
【HEOI2015】公约数数列 题解(分块)的更多相关文章
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
		
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
 - BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
		
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
 - 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
		
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
 - BZOJ4028 HEOI2015公约数数列(分块)
		
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
 - BZOJ 4028: [HEOI2015]公约数数列 分块
		
4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...
 - 【BZOJ4028】[HEOI2015]公约数数列 分块
		
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
 - [BZOJ4028][HEOI2015]公约数数列(分块)
		
先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...
 - bzoj4028: [HEOI2015]公约数数列
		
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
 - luogu P4108 [HEOI2015]公约数数列——solution
		
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
 
随机推荐
- python中pymysql  executemany 批量插入数据
			
import pymysqlimport timedb = pymysql.connect("IP","username","password&quo ...
 - 核心知识点:python入门
			
目录 一.python入门day1-day24 day01-03 编程语言 day04 变量 day05 垃圾回收机制(GC机制) 1 引用计数 2 标记清除 3 分代回收 day05 程序交互与基本 ...
 - MCU 51-4 独立按键&编码按键
			
独立按键: 按键的按下与释放是通过机械触点的闭合与断开来实现的,因机械触点的弹性作用,在闭合与断开的瞬间均有一个抖动的过程,抖动必须清除. 按键按下一次,数码管数值加1: #include<re ...
 - MCU 51-2 LED and Digital tube Test
			
点亮LED实验: #include <reg52.h> sbit LED1 = P1^; sbit LED2 = P1^; sbit LED8 = P1^; void main() { L ...
 - Scala 基础(十二):Scala 函数式编程(四)高级(二)参数(类型)推断、闭包(closure)、函数柯里化(curry)、控制抽象
			
1 参数(类型)推断 参数推断省去类型信息(在某些情况下[需要有应用场景],参数类型是可以推断出来的,如list=(1,2,3) list.map() map中函数参数类型是可以推断的),同时也可以 ...
 - 数据可视化之powerBI基础(十六)PowerQuery的这个小功能,让你轻松发现数据质量问题
			
https://zhuanlan.zhihu.com/p/64418072 源数据常常包含各种差错值,为了进行下一步的分析,我们必须先找出并更正这些差错,做这些工作几乎不会有什么快乐感可言,但却往往需 ...
 - Kubernetes实战指南(三十一):零宕机无缝迁移Spring Cloud至k8s
			
1. 项目迁移背景 1.1 为什么要在"太岁"上动土? 目前公司的测试环境.UAT环境.生产环境均已经使用k8s进行维护管理,大部分项目均已完成容器化,并且已经在线上平稳运行许久. ...
 - C#文件说明
			
Bin -- 用来存放编译的结果,是默认的输出路径,项目属性—>配置属性—>输出路径. obj -- 用于存放编译过程中生成的中间临时文件.增量编译:项目属性—>配置属性—>高 ...
 - 记录一次升级ant-design-vue的遇见的bug
			
记录一次升级ant-design-vue的遇见的bug 使用版本: "version": "2.5.2" "ant-design-vue": ...
 - 拿下Netty这座城,从现在开始!
			
你好,我是彤哥,技术公号主"彤哥读源码"的运营者. 其实,我刚学习Netty的时候,也是很迷茫的,直到有一天,一个同事收到了阿里的offer,他要去阿里做中台了,临走前他偷偷地告诉 ...