【HEOI2015】公约数数列 题解(分块)
前言:毒瘤数据结构题,半个下午都在搞它了……
---------------------------
题目大意:给定一个长度为$n$的序列,有两种操作:1.把$a_x$的值改成$y$。2.求一个最小的$p$使得$gcd(a_0,a_1,\cdots ,a_p)*XOR(a_0,a_1,\cdots ,a_p)=x$。
------------------------------
这种数据结构题一般只能用分块解决。线段树什么的不得T飞……
对于每个块,我们维护块内的$gcd$和$xor$和,还要记录以每个块的左端点为左端点的$xor$前缀和。
修改的时候直接$\sqrt n$暴力把所属块内的信息重新修改。
重点是查询。我们维护一个$pregcd$和$prexo$表示已经询问过的部分的$gcd$和$xor$和。有两种情况:
1.如果$gcd(pregcd,gcd[i])=pregcd$,那么二分查找块内可能符合条件的$p$。可以参考代码来理解。
2.如果不相等,那么暴力查找块内可能的$p$。
有一个性质:$A xor B=C$,那么$C xor B=A$。可以利用这个性质进行查询。
时间复杂度$O(n\sqrt n \log n)$。
代码:
/*记录每个块内的gcd,xor和;记录以每个块左端点为左端点的前缀xor和*/
#include<bits/stdc++.h>
#define int long long
using namespace std;
int gcd[],sumxo[],n,m,a[],block,tot,pregcd,prexo;
struct node{int sum,id;}xo[];
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if (ch=='-') f=-;ch=getchar();}
while(isdigit(ch)){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline int GCD(int x,int y){if (!y) return x;return GCD(y,x%y);}
bool cmp(node x,node y){if(x.sum==y.sum) return x.id<y.id;return x.sum<y.sum;}
inline void build(int i)
{
gcd[(i-)*block+]=sumxo[(i-)*block+]=a[(i-)*block+];
xo[(i-)*block+]=(node){sumxo[(i-)*block+],(i-)*block+};
for (int j=(i-)*block+;j<=min(n,i*block);j++)
{
gcd[j]=GCD(gcd[j-],a[j]);
sumxo[j]=sumxo[j-]^a[j];
xo[j]=(node){sumxo[j],j};
}
sort(xo+(i-)*block+,xo+min(n,i*block)+,cmp);
}
inline int half(int l,int r,int x)
{
int mid,res=l;
while(l<=r)
{
mid=(l+r)>>;
if (xo[mid].sum>=x) res=mid,r=mid-;
else l=mid+;
}
return res;
}
inline int query(int x)
{
int ans=-;
pregcd=a[],prexo=;
for (int i=;i<=tot&&ans==-;i++)
{
if (GCD(pregcd,gcd[min(n,i*block)])==pregcd)
{
if (x%pregcd==)
{
int k=(x/pregcd)^prexo;
int pos=half((i-)*block+,min(n,i*block),k);
if(xo[pos].sum==k)
{
ans=xo[pos].id;
break;
}
}
pregcd=GCD(pregcd,gcd[min(n,i*block)]),prexo^=sumxo[min(n,i*block)];
}
else
{
for (int j=(i-)*block+;j<=min(n,i*block);j++)
{
pregcd=GCD(pregcd,a[j]);prexo^=a[j];
if (pregcd*prexo==x){
ans=j;
break;
}
}
if (ans!=-) break;
}
}
return ans;
}
signed main()
{
n=read();block=sqrt(n);
tot=n/block;if (n%block) tot++;
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=tot;i++) build(i);
m=read();
while(m--)
{
string s;cin>>s;
if (s[]=='M')
{
int x=read(),y=read();x++;
a[x]=y;
build((x-)/block+);
}
else
{
int x=read();
int s=query(x);
if (s==-) printf("no\n");
else printf("%lld\n",s-);
}
}
return ;
}
【HEOI2015】公约数数列 题解(分块)的更多相关文章
- 【BZOJ4028】[HEOI2015]公约数数列(分块)
[BZOJ4028][HEOI2015]公约数数列(分块) 题面 BZOJ 洛谷 题解 看一道题目就不会做系列 首先\(gcd\)最多只会有\(log\)种取值,所以我们可以暴力枚举出所有可能的\(g ...
- BZOJ 4028: [HEOI2015]公约数数列 【分块 + 前缀GCD】
任意门:https://www.lydsy.com/JudgeOnline/problem.php?id=4028 4028: [HEOI2015]公约数数列 Time Limit: 10 Sec ...
- 洛谷 P4108 / loj 2119 [HEOI2015] 公约数数列 题解【分块】
看样子分块题应该做的还不够. 题目描述 设计一个数据结构. 给定一个正整数数列 \(a_0, a_1, \ldots , a_{n-1}\),你需要支持以下两种操作: MODIFY id x: 将 \ ...
- BZOJ4028 HEOI2015公约数数列(分块)
前缀gcd的变化次数是log的,考虑对每一种gcd查询,问题变为查询一段区间是否存在异或前缀和=x/gcd. 无修改的话显然可以可持久化trie,但这玩意实在没法支持修改.于是考虑分块. 对于每一块将 ...
- BZOJ 4028: [HEOI2015]公约数数列 分块
4028: [HEOI2015]公约数数列 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4028 Description 设计一个数据结 ...
- 【BZOJ4028】[HEOI2015]公约数数列 分块
[BZOJ4028][HEOI2015]公约数数列 Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. M ...
- [BZOJ4028][HEOI2015]公约数数列(分块)
先发掘性质: 1.xor和gcd均满足交换律与结合率. 2.前缀gcd最多只有O(log)个. 但并没有什么数据结构能同时利用这两个性质,结合Q=10000,考虑分块. 对每块记录这几个信息: 1.块 ...
- bzoj4028: [HEOI2015]公约数数列
Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x ...
- luogu P4108 [HEOI2015]公约数数列——solution
-by luogu 不会啊.... 然后%了一发题解, 关键是 考虑序列{$a_n$}的前缀gcd序列, 它是单调不升的,且最多只会改变$log_2N$次,因为每变一次至少除2 于是,当我们询问x时: ...
随机推荐
- Hexo学习
01.安装 Node.js 打开官方网站 https://nodejs.org 267b6d6d335cf62907c70321a1cbd3b 安装步骤非常简单,一直next,下一步就可以了,默认安装 ...
- 关于Pop!_OS 19.04有线网络始终正在连接
一开始使用Pop!_OS时就遇到这个问题,开机进入系统后明明网络没问题,WiFi正常可用, 但是插入网线后有线网络始终显示正在连接,然后可能过一会儿还会弹出来网络激活失败. 但是有可能在使用很久之后再 ...
- 普通平衡树学习笔记之Splay算法
前言 今天不容易有一天的自由学习时间,当然要用来"学习".在此记录一下今天学到的最基础的平衡树. 定义 平衡树是二叉搜索树和堆合并构成的数据结构,它是一 棵空树或它的左右两个子树的 ...
- DVWA学习记录 PartⅥ
Insecure CAPTCHA 1. 题目 Insecure CAPTCHA(全自动区分计算机和人类的图灵测试),意思是不安全的验证码. 指在进行验证的过程中,出现了逻辑漏洞,导致验证码没有发挥其应 ...
- redis(六):Redis 字符串(String)
Redis 字符串数据类型的相关命令用于管理 redis 字符串值,基本语法如下: 语法 redis 127.0.0.1:6379> COMMAND KEY_NAME 实例 redis 127. ...
- 基于.NetCore3.1系列 ——认证授权方案之Swagger加锁
一.前言 在之前的使用Swagger做Api文档中,我们已经使用Swagger进行开发接口文档,以及更加方便的使用.这一转换,让更多的接口可以以通俗易懂的方式展现给开发人员.而在后续的内容中,为了对a ...
- FileNotFoundError: [WinError 2] 系统找不到指定的文件。 解决方案
用Idle运行Python脚本的时候发现如下错误: Traceback (most recent call last): File "C:\Users\DangKai\Desktop\pyt ...
- Linux安装禅道项目管理软件
1.从官网上面下载禅道的rpm文件 #wget http://dl.cnezsoft.com/zentao/7.1/zentaopms-7.1.stable-1.noarch.rpm 2.用指令安装 ...
- three.js 数学方法之Box3
从今天开始郭先生就会说一下three.js 的一些数学方法了,像Box3.Plane.Vector3.Matrix3.Matrix4当然还有欧拉角和四元数.今天说一说three.js的Box3方法(B ...
- Maven配置文件中的版本使用-SNAPSHOT
SNAPSHOT是什么? SNAPSHOT是快照,是一种特殊的版本,制定了某个当前的开发进度副本.不同于正式版本,Maven每次构建都会在远程仓库中检查新的快照.如此每次发布更新代码的快照到仓库中,新 ...