How Python Handles Big Files
The Python programming language has become more and more popular in handling data analysis and processing because of its certain unique advantages. It’s easy to read and maintain. pandas, with a rich library of functions and methods packaged in it, is a fast, flexible and easy to use data analysis and manipulation tool built on top of Python. It is one of the big boosters to make Python an efficient and powerful data analysis environment.
pandas is memory-based. It does a great job when the to-be-manipulated data can fit into the memory. It is inconvenient, even unable, to deal with big data, which can’t be wholly loaded into the memory. Large files, however, like those containing data imported from the database or downloaded from the web, are common in real-world businesses. We need to have ways to manage them. How? That’s what I’d like to say something about.
By “big data” here, I am not talking about the TB or PB level data that requires distributed processing. I mean the GB level file data that can’t fit into the normal PC memory but can be held on disk. This is the more common type of big file processing scenario.
Since a big file can’t be loaded into the memory at once, we often need to retrieve it line by line or chunk by chunk for further processing. Both Python and pandas support this way of retrieval, but they don’t have cursors. Because of the absence of a cursor mechanism, we need to write code to implement the chunk-by-chunk retrieval in order to use it in functions and methods; sometimes we even have to write code to implement functions and methods. Here I list the typical scenarios of big file processing and their code examples to make you better understand Python’s way of dealing with them.
I. Aggregation
A simple aggregation is to traverse values in the target column and to perform calculation according to the specified aggregate operation, such as the sum operation that adds up traversed values; the count operation that records the number of traversed values; and the mean operation that adds up and counts the traversed values and then divides the sum by the number. Here let’s look at how Python does a sum.
Below is a part of a file:
To calculate the total sales amount, that is, doing sum over the amount column:
1. Retrieve file line by line
|
total=0 with open("orders.txt",'r') as f: line=f.readline() while True: line = f.readline() if not line: break total += float(line.split("\t")[4]) print(total) |
Open the file Read the header row Read detail data line by line Reading finishes when all lines are traversed Get cumulated value |
2. Retrieve file chunk by chunk in pandas
pandas supports data retrieval chunk by chunk. Below is the workflow diagram:
|
import pandas as pd chunk_data = pd.read_csv("orders.txt",sep="\t",chunksize=100000) total=0 for chunk in chunk_data: total+=chunk['amount'].sum() print(total) |
Retrieve the file chunk by chunk; each contains 100,000 lines Add up amounts of all chunks |
Pandas is good at retrieval and processing in large chunks. In theory, the bigger the chunk size, the faster the processing. Note that the chunk size should be able to fit into the available memory. If the chunksize is set as 1, it is a line-by-line retrieval, which is extremely slow. So I do not recommend a line-by-line retrieval when handling large files in pandas.
II. Filtering
The workflow diagram for filtering in pandas:
Similar to the aggregation, pandas will divide a big file into multiple chunks (n), filter each data chunk and concatenate the filtering results.
To get the sales records in New York state according to the above file:
1. With small data sets
|
import pandas as pd chunk_data = pd.read_csv("orders.txt",sep="\t",chunksize=100000) chunk_list = []
for chunk in chunk_data: chunk_list.append(chunk[chunk.state=="New York"]) res = pd.concat(chunk_list) print(res) |
Define an empty list for storing the result set Filter chunk by chunk Concatenate filtering results |
2. With big data sets
|
import pandas as pd chunk_data = pd.read_csv("orders.txt",sep="\t",chunksize=100000) n=0 for chunk in chunk_data: need_data = chunk[chunk.state=='New York'] if n == 0: need_data.to_csv("orders_filter.txt",index=None) n+=1 else: need_data.to_csv("orders_filter.txt",index=None,mode='a',header=None) |
For the result set of processing the first chunk, write it to the target file with headers retained and index removed For the result sets of processing other chunks, append them to the target file with both headers and index removed |
The logic of doing aggregates and filters is simple. But as Python doesn’t provide the cursor data type, we need to write a lot of code to get them done.
III. Sorting
The workflow diagram for sorting in pandas:
Sorting is complicated because you need to:
- Retrieve one chunk each time;
- Sort this chunk;
- Write the sorting result of each chunk to a temporary file;
- Maintain a list of k elements (k is the number of chunks) into which a row of data in each temporary file is put;
- Sort records in the list by the sorting field (same as the sort direction in step 2);
- Write the record with smallest (in ascending order) or largest (in descending order) value to the result file;
- Put another row from each temporary file to the list;
- Repeat step 6, 7 until all records are written to the result file.
To sort the above file by amount in ascending order, I write a complete Python program of implementing the external sorting algorithm:
|
import pandas as pd import os import time import shutil import uuid import traceback
def parse_type(s): if s.isdigit(): return int(s) try: res = float(s) return res except: return s
def pos_by(by,head,sep): by_num = 0 for col in head.split(sep): if col.strip()==by: break else: by_num+=1 return by_num
def merge_sort(directory,ofile,by,ascending=True,sep=","):
with open(ofile,'w') as outfile:
file_list = os.listdir(directory)
file_chunk = [open(directory+"/"+file,'r') for file in file_list] k_row = [file_chunk[i].readline()for i in range(len(file_chunk))] by = pos_by(by,k_row[0],sep)
outfile.write(k_row[0]) k_row = [file_chunk[i].readline()for i in range(len(file_chunk))] k_by = [parse_type(k_row[i].split(sep)[by].strip()) for i in range(len(file_chunk))]
with open(ofile,'a') as outfile:
while True: for i in range(len(k_by)): if i >= len(k_by): break
sorted_k_by = sorted(k_by) if ascending else sorted(k_by,reverse=True) if k_by[i] == sorted_k_by[0]: outfile.write(k_row[i]) k_row[i] = file_chunk[i].readline() if not k_row[i]: file_chunk[i].close() del(file_chunk[i]) del(k_row[i]) del(k_by[i]) else: k_by[i] = parse_type(k_row[i].split(sep)[by].strip()) if len(k_by)==0: break
def external_sort(file_path,by,ofile,tmp_dir,ascending=True,chunksize=50000,sep=',', os.makedirs(tmp_dir,exist_ok=True)
try: data_chunk = pd.read_csv(file_path,sep=sep,usecols=usecols,index_col=index_col,chunksize=chunksize) for chunk in data_chunk: chunk = chunk.sort_values(by,ascending=ascending) chunk.to_csv(tmp_dir+"/"+"chunk"+str(int(time.time()*10**7))+str(uuid.uuid4())+".csv",index=None,sep=sep) merge_sort(tmp_dir,ofile=ofile,by=by,ascending=ascending,sep=sep) except Exception: print(traceback.format_exc()) finally: shutil.rmtree(tmp_dir, ignore_errors=True)
if __name__ == "__main__": infile = "D:/python_question_data/orders.txt" ofile = "D:/python_question_data/extra_sort_res_py.txt" tmp = "D:/python_question_data/tmp" external_sort(infile,'amount',ofile,tmp,ascending=True,chunksize=1000000,sep='\t') |
Function Parse data type for the string Function Find the position of the column name by which records are ordered in the headers Function External merge sort List temporary files Open a temporary file Read the headers Get the position of column name by which records are ordered among the headers Export the headers Read the first line of detail data Maintain a list of k elements to store k sorting column values Perform sort in the order of the list Export the row with the smallest value Read and process temporary files one by one If the file traversal isn’t finished, continue reading and update the list Finish reading the file Function External sort Create a directory to store the temporary files Retrieve the file chunk by chunk Sort the chunks one by one Write the sorted file External merge sort Delete the temporary directory Main program Call the external sort function |
Python handles the external sort using line-by-line merge & write. I didn’t use pandas because it is incredibly slow when doing the line-wise retrieval. Yet it is fast to do the chunk-wise merge in pandas. You can compare their speeds if you want to.
The code is too complicated compared with that for aggregation and filtering. It’s beyond a non-professional programmer’s ability. The second problem is that it is slow to execute.
The third problem is that it is only for standard structured files and single column sorting. If the file doesn’t have a header row, or if there are variable number of separators in rows, or if the sorting column contains values of nonstandard date format, or if there are multiple sorting columns, the code will be more complicated.
IV. Grouping
It’s not easy to group and summarize a big file in Python, too. A convenient way out is to sort the file by the grouping column and then to traverse the ordered file during which neighboring records are put to same group if they have same grouping column values and a record is put to a new group if its grouping column value is different from the previous one. If a result set is too large, we need to write grouping result before the memory lose its hold.
It’s convenient yet slow because a full-text sorting is needed. Generally databases use the hash grouping to increase speed. It’s effective but much more complicated. It’s almost impossible for non-professionals to do that.
So, it’s inconvenient and difficult to handle big files with Python because of the absence of cursor data type and relevant functions. We have to write all the code ourselves and the code is inefficient.
If only there was a language that a non-professional programmer can handle to process large files. Luckily, we have esProc SPL.
It’s convenient and easy to use. Because SPL is designed to process structured data and equipped with a richer library of functions than pandas and the built-in cursor data type. It handles large files concisely, effortlessly and efficiently.
1. Aggregation
| A | |
| 1 | =file(file_path).cursor@tc() |
| 2 | =A1.total(sum(col)) |
2. Filtering
| A | B | |
| 1 | =file(file_path).cursor@tc() | |
| 2 | =A1.select(key==condition) | |
| 3 | =A2.fetch() | / Fetch data from a small result set |
| 4 | =file(out_file).export@tc(A2) | / Write a large result set to a target file |
3. Sorting
| A | |
| 1 | =file(file_path).cursor@tc() |
| 2 | =A1.sortx(key) |
| 3 | =file(out_file).export@tc(A2) |
4. Grouping
| A | B | |
| 1 | =file(file_path).cursor@tc() | |
| 2 | =A1.groups(key;sum(coli):total) | / Return a small result set directly |
| 3 | =A1.groupx(key;sum(coli):total) | |
| 4 | =file(out_file).export@tc(A3) | / Write a large result set to a target file |
SPL also employs the above-mentioned HASH algorithm to effectively increase performance.
SPL has the embedded parallel processing ability to be able to make the most use of the multi-core CPU to boost performance. A @m option only enables a function to perform parallel computing.
| A | |
| 1 | =file(file_path).cursor@mtc() |
| 2 | =A1.groups(key;sum(coli):total) |
There are a lot of Python-version parallel programs, but none is simple enough.
How Python Handles Big Files的更多相关文章
- 解决:Elipse配置Jython Interpreters时报错Error: Python stdlib source files not found
今天学习lynnLi的博客monkeyrunner之eclipse中运行monkeyrunner脚本之环境搭建(四)时,遇到了一个问题,即: lynnLi给出的解决办法是:将Python下的Lib拷贝 ...
- Huge CSV and XML Files in Python, Error: field larger than field limit (131072)
Huge CSV and XML Files in Python January 22, 2009. Filed under python twitter facebook pinterest lin ...
- 理解python的with语句
Python’s with statement provides a very convenient way of dealing with the situation where you have ...
- 转: 理解Python的With语句
Python’s with statement provides a very convenient way of dealing with the situation where you have ...
- [翻译]Python with 语句
With语句是什么? Python's with statement provides a very convenient way of dealing with the situation wher ...
- 能分析压缩的日志,且基于文件输入的PYTHON代码实现
确实感觉长见识了. 希望能坚持,并有多的时间用来分析这些思路和模式. #!/usr/bin/python import sys import gzip import bz2 from optparse ...
- PYTHON文本处理指南之日志LOG解析
处理特定字段的内容,并指指定条件输出. 注意代码中用一个方法列表,并且将方法参数延后传递. GOOGLE作过PYTHON代码的水平,就是不一样呀. 希望能学到这种通用的技巧. 只是,英文PDF看起来有 ...
- Awesome Python,Python的框架集合
Awesome Python A curated list of awesome Python frameworks, libraries and software. Inspired by awes ...
- Awesome Python(中文对照)
python中文资源大全:https://github.com/jobbole/awesome-python-cn A curated list of awesome Python framework ...
- Python——import与reload模块的区别
原创声明:本文系博主原创文章,转载或引用请注明出处. 1. 语法不同 import sys reload('sys') 2. 导入特性不同 import 和reload都可以对同一个模块多次加载, ...
随机推荐
- IISExpress 跨域cookie的奇怪问题
测试环境 WIN10,IIS 10,IISExpress 10,Chrome 120,Microsoft Edge 114 网站A 端口7001 只有1个Default.aspx,无前端代码.逻辑很简 ...
- Java 子类对象实例化的全过程
2 /* 3 * 子类对象实例化的全过程 4 * 5 *1.结果上来看:(继承性) 6 * 子类继承父类以后,就获取了父类中声明的属性或方法 7 * 创建子类的对象,在堆空间中,就会加载所有父类声明的 ...
- Java 递归方法的使用 + 例子
1 /* 2 * 递归方法的使用 3 * 1.递归方法:一个方法体内调用它自身 4 * 2.方法递归包含了一种隐式的循环,它会重复执行某段代码,但这种重复执行无须循环控制 5 * 递归一定要想已知方向 ...
- Word中的公式复制到Visio中乱码问题
将word中编辑好的公式复制到Visio中出现乱码问题 如图所示问题: 解决方案(Visio 选项 --> 高级 --> 显示 ->勾选禁用增强元文件优化) 具体的公式导入和解决操作 ...
- iVCam 可以当电脑的摄像头 同一个wifi
iVCam 可以当电脑的摄像头 同一个wifi
- 动态less 解决 vue main.js
// 引入主题文件 // eslint-disable-next-line no-unused-expressions import('./theme/color/' + config.theme + ...
- Linux 服务器Python后台运行服务(ssh断开不退出)
壹: 最近用python搭建一个物联网数据存储的微服务,部署到ubuntu上去,所以,python后台运行是一个必不可少的环节. 贰: 这个只需要是一个命令即可: 命令1(记录所有日志): nohup ...
- SQL注入详细讲解概括—宽字节注入
SQL注入详细讲解概括-宽字节注入 1.宽字节注入原理 2.宽字节注入方法 一.宽字节注入原理 What is 宽字节? 字符大小为一个字节时为窄字节 字符大小为两个及以上的字节为宽字节 英文26个字 ...
- FFmpeg命令行之ffmpeg调整音视频播放速度
FFmpeg对音频.视频播放速度的调整的原理不一样.下面简单的说一下各自的原理及实现方式: 一.调整视频速率 视频的倍速主要是通过控制filter中的setpts来实现,setpts是视频滤波器通过改 ...
- 解决Idea找不到URL问题
解决Idea找不到URL问题 我这几天遇到一个特别恶心的问题,查了很多资料,都是没用的后来自己静下心来,发现自己的import导包错了,我用的是jakarta,jakarta主要是利用Tomcat ...