The Python programming language has become more and more popular in handling data analysis and processing because of its certain unique advantages. It’s easy to read and maintain. pandas, with a rich library of functions and methods packaged in it, is a fast, flexible and easy to use data analysis and manipulation tool built on top of Python. It is one of the big boosters to make Python an efficient and powerful data analysis environment.

  pandas is memory-based. It does a great job when the to-be-manipulated data can fit into the memory. It is inconvenient, even unable, to deal with big data, which can’t be wholly loaded into the memory. Large files, however, like those containing data imported from the database or downloaded from the web, are common in real-world businesses. We need to have ways to manage them. How? That’s what I’d like to say something about.

  By “big data” here, I am not talking about the TB or PB level data that requires distributed processing. I mean the GB level file data that can’t fit into the normal PC memory but can be held on disk. This is the more common type of big file processing scenario.

  Since a big file can’t be loaded into the memory at once, we often need to retrieve it line by line or chunk by chunk for further processing. Both Python and pandas support this way of retrieval, but they don’t have cursors. Because of the absence of a cursor mechanism, we need to write code to implement the chunk-by-chunk retrieval in order to use it in functions and methods; sometimes we even have to write code to implement functions and methods. Here I list the typical scenarios of big file processing and their code examples to make you better understand Python’s way of dealing with them.

I. Aggregation

  A simple aggregation is to traverse values in the target column and to perform calculation according to the specified aggregate operation, such as the sum operation that adds up traversed values; the count operation that records the number of traversed values; and the mean operation that adds up and counts the traversed values and then divides the sum by the number. Here let’s look at how Python does a sum.

  Below is a part of a file:

  

  To calculate the total sales amount, that is, doing sum over the amount column:

  1. Retrieve file line by line

total=0

with open("orders.txt",'r') as f:

      line=f.readline()

    while   True:

          line = f.readline()

        if   not line:

              break

          total += float(line.split("\t")[4])

print(total)

Open the   file

Read the header   row

Read detail   data line by line

Reading   finishes when all lines are traversed

Get   cumulated value

  2. Retrieve file chunk by chunk in pandas

  pandas supports data retrieval chunk by chunk. Below is the workflow diagram:

  

import pandas as pd

chunk_data =   pd.read_csv("orders.txt",sep="\t",chunksize=100000)

total=0

for chunk in chunk_data:

total+=chunk['amount'].sum()

print(total)

Retrieve   the file chunk by chunk; each contains 100,000 lines

Add up   amounts of all chunks

  Pandas is good at retrieval and processing in large chunks. In theory, the bigger the chunk size, the faster the processing. Note that the chunk size should be able to fit into the available memory. If the chunksize is set as 1, it is a line-by-line retrieval, which is extremely slow. So I do not recommend a line-by-line retrieval when handling large files in pandas.

II. Filtering

  The workflow diagram for filtering in pandas:

  

  Similar to the aggregation, pandas will divide a big file into multiple chunks (n), filter each data chunk and concatenate the filtering results.

  To get the sales records in New York state according to the above file:

  1. With small data sets

import pandas as pd

chunk_data =   pd.read_csv("orders.txt",sep="\t",chunksize=100000)

chunk_list = []

 

for chunk in chunk_data:

      chunk_list.append(chunk[chunk.state=="New York"])

res = pd.concat(chunk_list)

print(res)

Define an   empty list for storing the result set

Filter   chunk by chunk

Concatenate   filtering results

  2. With big data sets

import pandas as pd

chunk_data =   pd.read_csv("orders.txt",sep="\t",chunksize=100000)

n=0

for chunk in chunk_data:

      need_data = chunk[chunk.state=='New York']

    if n ==   0:

          need_data.to_csv("orders_filter.txt",index=None)

          n+=1

    else:

          need_data.to_csv("orders_filter.txt",index=None,mode='a',header=None)

For the   result set of processing the first chunk, write it to the target file with   headers retained and index removed

For the   result sets of processing other chunks, append them to the target file with   both headers and index removed

  The logic of doing aggregates and filters is simple. But as Python doesn’t provide the cursor data type, we need to write a lot of code to get them done.

III. Sorting

  The workflow diagram for sorting in pandas:

  

  Sorting is complicated because you need to:

  1. Retrieve one chunk each time;
  2. Sort this chunk;
  3. Write the sorting result of each chunk to a temporary file;
  4. Maintain a list of k elements (k is the number of chunks) into which a row of data in each temporary file is put;
  5. Sort records in the list by the sorting field (same as the sort direction in step 2);
  6. Write the record with smallest (in ascending order) or largest (in descending order) value to the result file;
  7. Put another row from each temporary file to the list;
  8. Repeat step 6, 7 until all records are written to the result file.

  To sort the above file by amount in ascending order, I write a complete Python program of implementing the external sorting algorithm:

import pandas as pd

import os

import time

import shutil

import uuid

import traceback

 

def parse_type(s):

    if   s.isdigit():

          return int(s)

    try:

        res   = float(s)

          return res

    except:

          return s

   

def pos_by(by,head,sep):

    by_num   = 0

    for col   in head.split(sep):

        if   col.strip()==by:

              break

          else:

              by_num+=1

    return   by_num

 

def   merge_sort(directory,ofile,by,ascending=True,sep=","):

   

with open(ofile,'w') as outfile:

       

          file_list = os.listdir(directory)

       

          file_chunk = [open(directory+"/"+file,'r') for file in file_list]

          k_row = [file_chunk[i].readline()for i in range(len(file_chunk))]

        by   = pos_by(by,k_row[0],sep)

       

          outfile.write(k_row[0])

    k_row =   [file_chunk[i].readline()for i in range(len(file_chunk))]

k_by = [parse_type(k_row[i].split(sep)[by].strip())  for i in range(len(file_chunk))]

 

with open(ofile,'a') as outfile:

       

          while True:

              for i in range(len(k_by)):

                  if i >= len(k_by):

                    break

                 

                  sorted_k_by = sorted(k_by) if ascending else sorted(k_by,reverse=True)

                  if k_by[i] == sorted_k_by[0]:

                    outfile.write(k_row[i])

                    k_row[i] =   file_chunk[i].readline()

                    if not k_row[i]:

                        file_chunk[i].close()

                        del(file_chunk[i])

                        del(k_row[i])

                        del(k_by[i])

                    else:

                        k_by[i] =   parse_type(k_row[i].split(sep)[by].strip())

              if len(k_by)==0:

                  break

 

   

def   external_sort(file_path,by,ofile,tmp_dir,ascending=True,chunksize=50000,sep=',',
usecols=None,index_col=None):

os.makedirs(tmp_dir,exist_ok=True)

 

    try:

          data_chunk = pd.read_csv(file_path,sep=sep,usecols=usecols,index_col=index_col,chunksize=chunksize)

        for   chunk in data_chunk:

              chunk = chunk.sort_values(by,ascending=ascending)

              chunk.to_csv(tmp_dir+"/"+"chunk"+str(int(time.time()*10**7))+str(uuid.uuid4())+".csv",index=None,sep=sep)

          merge_sort(tmp_dir,ofile=ofile,by=by,ascending=ascending,sep=sep)

    except   Exception:

          print(traceback.format_exc())

      finally:

          shutil.rmtree(tmp_dir, ignore_errors=True)

 

 

if __name__ == "__main__":

    infile   = "D:/python_question_data/orders.txt"

    ofile =   "D:/python_question_data/extra_sort_res_py.txt"

    tmp =   "D:/python_question_data/tmp"

      external_sort(infile,'amount',ofile,tmp,ascending=True,chunksize=1000000,sep='\t')

Function

Parse data   type for the string

Function

Find the   position of the column name by which records are ordered in the headers

Function

External   merge sort

List   temporary files

Open a   temporary file

Read the   headers

Get the   position of column name by which records are ordered among the headers

Export the   headers

Read the   first line of detail data

Maintain a   list of k elements to store k sorting column values

Perform   sort in the order of the list

Export the   row with the smallest value

Read and   process temporary files one by one

If the file   traversal isn’t finished, continue reading and update the list

Finish   reading the file

Function

External   sort

Create a   directory to store the temporary files

Retrieve   the file chunk by chunk

Sort the   chunks one by one

Write the   sorted file

External   merge sort

Delete the temporary   directory

Main   program

Call the   external sort function

  Python handles the external sort using line-by-line merge & write. I didn’t use pandas because it is incredibly slow when doing the line-wise retrieval. Yet it is fast to do the chunk-wise merge in pandas. You can compare their speeds if you want to.

  The code is too complicated compared with that for aggregation and filtering. It’s beyond a non-professional programmer’s ability. The second problem is that it is slow to execute.

  The third problem is that it is only for standard structured files and single column sorting. If the file doesn’t have a header row, or if there are variable number of separators in rows, or if the sorting column contains values of nonstandard date format, or if there are multiple sorting columns, the code will be more complicated.

IV. Grouping

  It’s not easy to group and summarize a big file in Python, too. A convenient way out is to sort the file by the grouping column and then to traverse the ordered file during which neighboring records are put to same group if they have same grouping column values and a record is put to a new group if its grouping column value is different from the previous one. If a result set is too large, we need to write grouping result before the memory lose its hold.

  It’s convenient yet slow because a full-text sorting is needed. Generally databases use the hash grouping to increase speed. It’s effective but much more complicated. It’s almost impossible for non-professionals to do that.

So, it’s inconvenient and difficult to handle big files with Python because of the absence of cursor data type and relevant functions. We have to write all the code ourselves and the code is inefficient.

  If only there was a language that a non-professional programmer can handle to process large files. Luckily, we have esProc SPL.

  It’s convenient and easy to use. Because SPL is designed to process structured data and equipped with a richer library of functions than pandas and the built-in cursor data type. It handles large files concisely, effortlessly and efficiently.

  1. Aggregation

  A
1 =file(file_path).cursor@tc()
2 =A1.total(sum(col))

  2. Filtering

  A B
1 =file(file_path).cursor@tc()  
2 =A1.select(key==condition)  
3 =A2.fetch() / Fetch data from a small result set
4 =file(out_file).export@tc(A2) / Write a large result set to a target   file

  3. Sorting

  A
1 =file(file_path).cursor@tc()
2 =A1.sortx(key)
3 =file(out_file).export@tc(A2)

  4. Grouping

  A B
1 =file(file_path).cursor@tc()  
2 =A1.groups(key;sum(coli):total) / Return a small result set directly
3 =A1.groupx(key;sum(coli):total)  
4 =file(out_file).export@tc(A3) / Write a large result set to a target   file

  SPL also employs the above-mentioned HASH algorithm to effectively increase performance.

  SPL has the embedded parallel processing ability to be able to make the most use of the multi-core CPU to boost performance. A @m option only enables a function to perform parallel computing.

  A
1 =file(file_path).cursor@mtc()
2 =A1.groups(key;sum(coli):total)

  There are a lot of Python-version parallel programs, but none is simple enough.

How Python Handles Big Files的更多相关文章

  1. 解决:Elipse配置Jython Interpreters时报错Error: Python stdlib source files not found

    今天学习lynnLi的博客monkeyrunner之eclipse中运行monkeyrunner脚本之环境搭建(四)时,遇到了一个问题,即: lynnLi给出的解决办法是:将Python下的Lib拷贝 ...

  2. Huge CSV and XML Files in Python, Error: field larger than field limit (131072)

    Huge CSV and XML Files in Python January 22, 2009. Filed under python twitter facebook pinterest lin ...

  3. 理解python的with语句

    Python’s with statement provides a very convenient way of dealing with the situation where you have ...

  4. 转: 理解Python的With语句

    Python’s with statement provides a very convenient way of dealing with the situation where you have ...

  5. [翻译]Python with 语句

    With语句是什么? Python's with statement provides a very convenient way of dealing with the situation wher ...

  6. 能分析压缩的日志,且基于文件输入的PYTHON代码实现

    确实感觉长见识了. 希望能坚持,并有多的时间用来分析这些思路和模式. #!/usr/bin/python import sys import gzip import bz2 from optparse ...

  7. PYTHON文本处理指南之日志LOG解析

    处理特定字段的内容,并指指定条件输出. 注意代码中用一个方法列表,并且将方法参数延后传递. GOOGLE作过PYTHON代码的水平,就是不一样呀. 希望能学到这种通用的技巧. 只是,英文PDF看起来有 ...

  8. Awesome Python,Python的框架集合

    Awesome Python A curated list of awesome Python frameworks, libraries and software. Inspired by awes ...

  9. Awesome Python(中文对照)

    python中文资源大全:https://github.com/jobbole/awesome-python-cn A curated list of awesome Python framework ...

  10. Python——import与reload模块的区别

     原创声明:本文系博主原创文章,转载或引用请注明出处. 1. 语法不同 import sys reload('sys') 2. 导入特性不同 import 和reload都可以对同一个模块多次加载, ...

随机推荐

  1. 闭关修炼180天----手写迷你版的tomcat-Minicat

    手写迷你版的tomcat-Minicat 小谈Tomcat Tomcat请求处理⼤致过程 Tomcat是⼀个Http服务器(能够接收并且处理http请求,所以tomcat是⼀个http服务器) 我们使 ...

  2. Openssl命令详解 - 证书篇

    生成自签证书 # 设置CA证书subject CA_SUBJ="/C=CN/ST=ShanDong/L=JiNan/O=sec/OU=sec/CN=www.hxy.com/emailAddr ...

  3. Spring事务(六)-只读事务

    @Transactional(readOnly=true)就可以把事务方法设置成只读事务.设置了只读事务,事务从开始到结束,将看不见其他事务所提交的数据.这在某种程度上解决了事务并发的问题.一个方法内 ...

  4. Linux性能监控(一)-sar

    sar是一个非常全面的一个分析工具,对文件的读写,系统调用的使用情况,磁盘IO,CPU相关使用情况,内存使用情况,进程活动等都可以进行有效的分析.sar工具将对系统当前的状态进行取样,然后通过计算数据 ...

  5. vue-helper 组件 跳转 | Vue Jump to Tag 好用,需自己设定快捷键 | Path Intellisense

    vue-helper 组件 跳转 组件名称 除首字母大写,其他不能有大写字母,否则不能跳转 比如 mycomponent 这个名字可以 Mycomponent 这个名字可以 myComponent 这 ...

  6. Markdown表情参考

    emoji-github 文章内容来源 https://github.com/hoangdqvn/emoji-github/blob/master/README.md ️ Emoji-GIT Peop ...

  7. Flutter Chanel通信流程

    目录介绍 01.flutter和原生之间交互 02.MethodChanel流程 03.MethodChanel使用流程 04.MethodChanel代码实践 05.EventChannel流程 0 ...

  8. Jest快速使用指南

    1. 引言 写了几个函数,怎么知道写得对不对呢? 可以通过测试函数,当然开发中测试的意义不只是这个 Jest是常用的JavaScript测试框架 官网为:Jest · Delightful JavaS ...

  9. 记录--Vue使用CDN引入,响应式失效?

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 背景 最近心血来潮,想要在本地开发时,也用CDN的方式引入 Vue,想着既然通过CDN引入了,那么在项目中就没必要再 import Vue ...

  10. 一文搞懂idea中的根目录和路径(以Mybatis为例)

    一文搞懂idea中的根目录和路径(以Mybatis为例) 在 IntelliJ IDEA 中,项目结构和组织比较灵活,允许用户根据项目需求进行定制. 1.根目录概念: 1.1 项目根目录(Projec ...