GitHub仓库:gy-7/mmcls_multi_label_torchserve (github.com)

各个文件说明:

cls_requests_demo:分类模型请求api服务的demo

det_requests_demo:检测模型请求api服务的demo

inference:要修改的inference代码

mmcls_handler:要修改的mmcls_handler代码

torchserve_log:过程中遇到的报错集合

1️⃣ 修改 mmcls_handler.py

我们首先要搞清楚,mmcls_handler.py 是转换 pytorch 模型为 torch serve 模型的时候用到的。转换过程中把里边的内容嵌入到转换完的 torch serve 模型里了。

我们主要修改的是 mmcls_handler 中 postprocess 的操作。将仓库中 mmcls_handler.py 文件内容覆盖掉mmclassification/tools/deployment/mmcls_handler.py。

2️⃣ 重新转换所有的模型:

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_componente_resnet50.py ../torchserve/pytorch_models/cls_componente_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_componente_resnet50

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_echoes_resnet50.py ../torchserve/pytorch_models/cls_echoes_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_echoes_resnet50

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_edges_resnet50.py ../torchserve/pytorch_models/cls_edges_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_edges_resnet50

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_slice_resnet50.py ../torchserve/pytorch_models/cls_slice_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_slice_resnet50

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_thyroid_resnet50.py ../torchserve/pytorch_models/cls_thyroid_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_thyroid_resnet50

python tools/deployment/mmcls2torchserve.py ../torchserve/pytorch_models/cls_strong_echoes_resnet50.py ../torchserve/pytorch_models/cls_strong_echoes_resnet50.pth --output-folder ../torchserve/torchserve_models/mmcls/ --model-name cls_strong_echoes_resnet50

3️⃣ 修改inference.py

inference.py 是调用api服务的时候,调用的接口。我们用docker 装的 torch serve服务,所以我们要修改容器里边的 源码。

启动原先的服务,进入容器。

docker exec -it --user root 7f0f1ea9e3e8 /bin/bash

# 修改inference.py
vim /opt/conda/lib/python3.7/site-packages/mmcls/apis/inference.py # 保存镜像
docker commit -m "fix inference.py" 7f0f1ea9e3e8 mmcls-serve_multi_label:latest

4️⃣ 可以愉快的出来结果了

前五个是单标签,最后一个是多标签。

{'pred_label': 2, 'pred_score': 0.9856280088424683, 'pred_class': 'vertical'}
{'pred_label': 0, 'pred_score': 0.9774421453475952, 'pred_class': 'benign'}
{'pred_label': 4, 'pred_score': 0.6918501853942871, 'pred_class': 'componentes_4'}
{'pred_label': 2, 'pred_score': 0.5446202158927917, 'pred_class': 'echoes_2'}
{'pred_label': 1, 'pred_score': 0.4259072542190552, 'pred_class': 'edges_1'}
{'pred_label': [0, 0, 0, 0, 0], 'pred_score': [0.46634966135025024, 0.07801822572946548, 0.2685200273990631, 0.016055332496762276, 0.13444863259792328], 'pred_class': []}

mmcls 多标签模型部署在torch serve的更多相关文章

  1. PyTorch专栏(六): 混合前端的seq2seq模型部署

    欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...

  2. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  3. 学习笔记TF022:产品环境模型部署、Docker镜像、Bazel工作区、导出模型、服务器、客户端

    产品环境模型部署,创建简单Web APP,用户上传图像,运行Inception模型,实现图像自动分类. 搭建TensorFlow服务开发环境.安装Docker,https://docs.docker. ...

  4. Tensorflow Serving 模型部署和服务

    http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/233614 ...

  5. 【tensorflow-转载】tensorflow模型部署系列

    参考 1. tensorflow模型部署系列: 完

  6. Slim模型部署多GPU

    1 多GPU原理 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU. 多GPU时,有模型并行和数据并行两种情况. 模型并行指模型的不同部分在不同GPU上运行. 数 ...

  7. TensorFlow Serving实现多模型部署以及不同版本模型的调用

    前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意 ...

  8. 如何使用flask将模型部署为服务

    在某些场景下,我们需要将机器学习或者深度学习模型部署为服务给其它地方调用,本文接下来就讲解使用python的flask部署服务的基本过程. 1. 加载保存好的模型 为了方便起见,这里我们就使用简单的分 ...

  9. 基于FastAPI和Docker的机器学习模型部署快速上手

    针对前文所述 机器学习模型部署摘要 中docker+fastapi部署机器学习的一个完整示例 outline fastapi简单示例 基于文件内容检测的机器学习&fastapi 在docker ...

  10. Nanodet模型部署(ncnn,openvino)/YOLOX部署(TensorRT)

    Nanodet模型部署(ncnn,openvino) nanodet官方代码库nanodet 1. nanodet模型部署在openvino上 step1: 参考链接 nanodet官方demo op ...

随机推荐

  1. Lazada电商api接口 获取商品详情 数据采集

    iDataRiver平台 https://www.idatariver.com/zh-cn/ 提供开箱即用的Lazada电商数据采集API,供用户按需调用. 接口使用详情请参考Lazada接口文档 接 ...

  2. [win10] 开始-设置 / 右键-显示设置 / 右键个性化 等都不好使了。。 ms-settings:display

    现象: 各种win10自带的都打不开了. 发现: 最近总是断网,重启下就好了,然后点击网络,就一直出不来.后来发现所有win10的窗口都出不来了.控制面板等等. 解决:好消息是最后解决了.坏消息是没有 ...

  3. 各种O总结及阿里代码规范总结

    首先梳理下POJO POJO包括 DO/DTO/BO/VO(所有的POJO类属性必须使用包装数据类型.) 定义 DO/DTO/VO 等 POJO 类时,不要设定任何属性默认值. controller使 ...

  4. 小程序登录V2

    参考:https://developers.weixin.qq.com/community/develop/doc/000cacfa20ce88df04cb468bc52801(通知) https:/ ...

  5. 解决js缓存地址问题

    解决js缓存地址问题 js实现不缓存 <META HTTP-EQUIV="pragma" CONTENT="no-cache"> <META ...

  6. 【atcoder beginner 308E - MEX】

    前缀和 二分查找 打表枚举 代码如下 import java.io.BufferedReader; import java.io.IOException; import java.io.InputSt ...

  7. [675. 为高尔夫比赛砍树] dijkstra算法

    import java.util.*; class Solution { public int cutOffTree(List<List<Integer>> forest) { ...

  8. CSS(语义化标签、多媒体标签、新表单元素、属性选择器、结构伪类选择器、伪元素选择器、盒子模型、滤镜、calc函数、过渡)

    一.HTML5新特性 概述 HTML5 的新增特性主要是针对于以前的不足,增加了一些新的标签.新的表单和新的表单属性等. 这些新特性都有兼容性问题,基本是 IE9+ 以上版本的浏览器才支持,如果不考虑 ...

  9. cmake:针对某些依赖 openssl-1.0 而机器上还有其他版本的 openssl

    指定下列变量: -DOPENSSL_INCLUDE_DIR:指向 openssl-1.0 的 include 目录 -DOPENSSL_SSL_LIBRARIES:指向 openssl-1.0 的 l ...

  10. SpringBoot集成drools

    目录 1.背景 2.需求 3.实现 3.1 引入jar包 3.2 编写drools配置类 3.3 编写Person对象 3.4 编写drl文件 3.5 编写kmodule.xml文件 3.6 编写Co ...