【scikit-learn基础】--『预处理』之 缺失值处理
数据的预处理是数据分析,或者机器学习训练前的重要步骤。
通过数据预处理,可以
- 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性
- 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集
- 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加高效
本篇介绍的缺失值处理,是数据预处理中非常重要的一步,因为很多机器学习算法都假设数据是完整的,算法的执行过程中没有考虑缺失值的影响。
所以,为了提高数据质量、改进数据分析结果、提高数据挖掘和机器学习的效果,缺失值处理必不可少。
1. 原理
处理缺失值的手段大致有4类:
- 删除存在缺失值数据行
- 填充缺失值
- 不处理缺失值
- 用深度学习方法处理
1.1. 删除缺失值数据
删除缺失值是最简单的一种处理方式,不过,在某些情况下,这可能会导致数据的大量丢失。
如果数据丢失过多,可能会改变数据的分布,影响模型的准确性。
所以,只有在缺失值占比很小的情况下,才会考虑使用这种处理方式。
删除缺失值用pandas库的方法即可,比如:
import pandas as pd
df = pd.util.testing.makeMissingDataframe()
print("删除前: {} 行".format(len(df)))
df = df.dropna()
print("删除后: {} 行".format(len(df)))
# 运行结果
删除前: 30 行
删除后: 19 行
1.2. 填充缺失值
直接删除存在缺失值的数据行虽然简单,但是在实际应用中,使用的并不多。
实际情况下,使用最多的还是填充缺失值。
scikit-learn库中,填充缺失值的方式主要有:
1.2.1. 均值填充
均值填充就是用缺失值所在列的平均值来填充缺失值。
from sklearn.impute import SimpleImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan]])
print("均值填充前:\n{}".format(data))
imp = SimpleImputer(missing_values=np.nan, strategy="mean")
data = imp.fit_transform(data)
print("均值填充后:\n{}".format(data))
# 运行结果
均值填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]]
均值填充后:
[[1. 2. 3. ]
[4. 5. 6. ]
[7. 8. 4.5]]
填充的5和4.5分别是第二列和第三列的平均值。
1.2.2. 中位数填充
中位数填充就是用缺失值所在列的中位数来填充缺失值。
from sklearn.impute import SimpleImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan], [10, 11, 12]])
print("中位数填充前:\n{}".format(data))
imp = SimpleImputer(missing_values=np.nan, strategy="median")
data = imp.fit_transform(data)
print("中位数填充后:\n{}".format(data))
# 运行结果
中位数填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]
[10. 11. 12.]]
中位数填充后:
[[ 1. 2. 3.]
[ 4. 8. 6.]
[ 7. 8. 6.]
[10. 11. 12.]]
填充的8和6分别是第二列和第三列的中位数。
1.2.3. 众数填充
众数填充就是用缺失值所在列的众数数来填充缺失值。
from sklearn.impute import SimpleImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan], [10, 8, 3]])
print("众数填充前:\n{}".format(data))
imp = SimpleImputer(missing_values=np.nan, strategy="most_frequent")
data = imp.fit_transform(data)
print("众数填充后:\n{}".format(data))
# 运行结果
众数填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]
[10. 8. 3.]]
众数填充后:
[[ 1. 2. 3.]
[ 4. 8. 6.]
[ 7. 8. 3.]
[10. 8. 3.]]
填充的8和3分别是第二列和第三列的众数。
1.2.4. 常量填充
常量填充就是用指定的常量来填充缺失值。
from sklearn.impute import SimpleImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan]])
print("常量填充前:\n{}".format(data))
imp = SimpleImputer(missing_values=np.nan, fill_value=100, strategy="constant")
data = imp.fit_transform(data)
print("常量填充后:\n{}".format(data))
# 运行结果
常量填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]]
常量填充后:
[[ 1. 2. 3.]
[ 4. 100. 6.]
[ 7. 8. 100.]]
缺失值用常量100填充了。
1.2.5. 插值填充
插值填充就是使用线性插值或多项式插值等方法,基于已知的数据点估计缺失值。
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan]])
print("插值填充前:\n{}".format(data))
imp = IterativeImputer(max_iter=10, random_state=0)
data = imp.fit_transform(data)
print("插值填充后:\n{}".format(data))
# 运行结果
插值填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]]
插值填充后:
[[1. 2. 3. ]
[4. 5.00203075 6. ]
[7. 8. 8.99796726]]
1.2.6. K近邻填充
K近邻填充就是利用K近邻算法,找到与缺失值最近的K个数据点,用它们的值的平均数或中位数来填充缺失值。
from sklearn.impute import KNNImputer
data = np.array([[1, 2, 3], [4, np.nan, 6], [7, 8, np.nan], [10, 11, 12]])
print("K近邻填充前:\n{}".format(data))
imp = KNNImputer(n_neighbors=2)
data = imp.fit_transform(data)
print("K近邻填充后:\n{}".format(data))
# 运行结果
K近邻填充前:
[[ 1. 2. 3.]
[ 4. nan 6.]
[ 7. 8. nan]
[10. 11. 12.]]
K近邻填充后:
[[ 1. 2. 3.]
[ 4. 5. 6.]
[ 7. 8. 9.]
[10. 11. 12.]]
2. 作用
缺失值处理的主要作用包括:
- 提高数据完整性和准确性:如果数据中存在缺失值,可能会影响分析的准确性,甚至导致错误的结论。因此,通过填补缺失值,我们可以确保数据的完整性和准确性。
- 提升数据质量:缺失值可能会降低数据的质量,使得数据分析变得更为困难。通过处理缺失值,我们可以提升数据的质量,使得分析结果更加可靠。
- 提高算法性能:许多机器学习和数据挖掘算法在处理不完整数据时性能会下降。处理缺失值可以使得这些算法更好地运行,提高其性能。
- 减少信息丢失:在某些情况下,缺失值可能代表着某些信息的丢失。通过对这些缺失值进行处理,我们可以尽量减少信息丢失的数量。
- 消除或减少噪声:缺失值的存在可能会引入数据中的噪声,这种噪声可能会对数据分析产生干扰,甚至影响模型的训练效果。通过填补这些缺失值,我们可以消除或减少这种噪声。
3. 总结
在选择处理缺失值的方法时,需要考虑数据的性质、缺失值的比例、数据的分布以及具体的分析任务等因素。
同时,不同的方法可能适用于不同的场景,需要结合具体情况进行选择。
【scikit-learn基础】--『预处理』之 缺失值处理的更多相关文章
- Python基础『一』
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...
- Python基础『二』
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...
- 『TensorFlow』TFR数据预处理探究以及框架搭建
一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ[&q ...
- 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理
Fork版本项目地址:SSD 一.TFR数据读取 创建slim.dataset.Dataset对象 在train_ssd_network.py获取数据操作如下,首先需要slim.dataset.Dat ...
- 『cs231n』计算机视觉基础
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...
- 『TensorFlow』专题汇总
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训 ...
- 『计算机视觉』Mask-RCNN_从服装关键点检测看KeyPoints分支
下图Github地址:Mask_RCNN Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mas ...
- 『计算机视觉』Mask-RCNN
一.Mask-RCNN流程 Mask R-CNN是一个实例分割(Instance segmentation)算法,通过增加不同的分支,可以完成目标分类.目标检测.语义分割.实例分割.人体姿势识别等多种 ...
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
- 『TensotFlow』RNN/LSTM古诗生成
往期RNN相关工程实践文章 『TensotFlow』基础RNN网络分类问题 『TensotFlow』RNN中文文本_上 『TensotFlow』基础RNN网络回归问题 『TensotFlow』RNN中 ...
随机推荐
- sql-labs--Less-1--Error based-Single quotes
sql="SELECT * FROM users WHERE id='id' LIMIT 0,1"; 打开第一关,我们看到如下界面,上面写着Please input the ID ...
- Kali-Linux-配置开发环境
本文主要讲解JDK.SDK.eclipse-adt.android studio.cpu模式TensorFlow 的安装配置.update:2019-08-30 03:31:46 JDK 当前系统jd ...
- 了解JAVA内存模型(JMM)
1.概述 我们常说的JMM指的是Java内存模型(Java Memory Model,JMM),主要用于控制Java程序解决线程间如何通信和数据同步,JMM规范了多线程访问共享内存时的 可见性.有序性 ...
- 后端常用的Linux命令大全,建议收藏
引言 作为一名后端工程师,使用终端是一种常见的做法,也是你应该学习的技能.许多命令和实用程序可以帮助你在使用 Linux 时更有效地完成任务. 基本 Linux 命令 如果你想使用 Linux 操作系 ...
- 【目标检测】Fast R-CNN算法实现
一.前言 2014年,Ross Girshick提出RCNN,成为目标检测领域的开山之作.一年后,借鉴空间金字塔池化思想,Ross Girshick推出设计更为巧妙的Fast RCNN(https:/ ...
- paramiko免密登陆
paramiko免密登陆 # -*- coding: utf-8 -*- import paramiko pkey='D:/pycharm_workspace/testpy/ssh_paramiko_ ...
- 2023-09-30:用go语言,给你一个整数数组 nums 和一个整数 k 。 nums 仅包含 0 和 1, 每一次移动,你可以选择 相邻 两个数字并将它们交换。 请你返回使 nums 中包含 k
2023-09-30:用go语言,给你一个整数数组 nums 和一个整数 k . nums 仅包含 0 和 1, 每一次移动,你可以选择 相邻 两个数字并将它们交换. 请你返回使 nums 中包含 k ...
- Android利用广播监听按下HOME和电源键
package cc.testhome; import cc.testhome.HomeKeyObserver.OnHomeKeyListener; import cc.testhome.PowerK ...
- 我们又组织了一次欧洲最大开源社区活动,Hugging Face 博客欢迎社区成员发帖、Hugging Chat 功能更新!
每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...
- Vue之仿百度搜索框
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...