Ehab's REAL Number Theory Problem

题目描述

You are given an array $ a $ of length $ n $ that has a special condition: every element in this array has at most 7 divisors. Find the length of the shortest non-empty subsequence of this array product of whose elements is a perfect square.

A sequence $ a $ is a subsequence of an array $ b $ if $ a $ can be obtained from $ b $ by deletion of several (possibly, zero or all) elements.

输入格式

The first line contains an integer $ n $ ( $ 1 \le n \le 10^5 $ ) — the length of $ a $ .

The second line contains $ n $ integers $ a_1 $ , $ a_2 $ , $ \ldots $ , $ a_{n} $ ( $ 1 \le a_i \le 10^6 $ ) — the elements of the array $ a $ .

输出格式

Output the length of the shortest non-empty subsequence of $ a $ product of whose elements is a perfect square. If there are several shortest subsequences, you can find any of them. If there's no such subsequence, print "-1".

样例 #1

样例输入 #1

3
1 4 6

样例输出 #1

1

样例 #2

样例输入 #2

4
2 3 6 6

样例输出 #2

2

样例 #3

样例输入 #3

3
6 15 10

样例输出 #3

3

样例 #4

样例输入 #4

4
2 3 5 7

样例输出 #4

-1

提示

In the first sample, you can choose a subsequence $ [1] $ .

In the second sample, you can choose a subsequence $ [6, 6] $ .

In the third sample, you can choose a subsequence $ [6, 15, 10] $ .

In the fourth sample, there is no such subsequence.

至多7个因子是什么条件?仔细分析,其实是说明这个数至多有两个不同质因数。

要求一个序列的所有数相乘为完全平方。也就代表任意一个质因数的次数之和为偶数。那么在某一个数中,如果有一个质因数出现了偶数次,那他很没用,出现了和没出现一个样,我们就可以不理他。然后现在要求选出来的序列每种质因数出现偶数次,会想到一件事。如果有一个数的质因数是 \((u,v)\),那么就一定需要一个含有 \(u\) 的数和一个含有 \(v\) 的数,然后往后又要推。最后一定是一个环。所以考虑最小环构图。

构图很简单,如果存在一个数 \(a_i=u\times v\)( \(u,v\) 为质数),那么就可以从 \(u\) 向 \(v\) 连一条无向边。如果一个数次数为奇数的质因数只有一个,那就把质因数 \(p\) 和 \(1\) 连边。

现在到了跑最小环。最小环问题解法可以使用 Floyd,但是这里完全行不通。注意到这里的边是无权的,对于最小环,有一种 \(O(n^2)\) 的算法。钦定一个一定在最小环上的点 \(x\),用它跑出一棵 bfs 树。然后对于一条不在树上的边 \((u,v)\),设点 \(x\) 到点 \(y\) 的最短路为 \(d_y\),那么如果点 \(x\) 和点 \((u,v)\) 要同时在最小环上,最小环长为 \(d_u+d_v+1\)。

或许有人会问,如果点 \((u,v)\) 在 bfs 树上的 lca 不为点 \(x\),怎么办?其实没关系,因为等我枚举 \(x\) 枚举到他们的 lca 时,自然就会把那个环算入了。

\(O(n^2)\) 的复杂度仍然不能接受,但发现不存在两个数 \(x,y\ge 1000\),同时又有连边。这说明,最小环上一定有一个点 \(x\le1000\)。所以我们枚举在环上的点时只用枚举小于等于1000的质数就行了。

复杂度 \(O(\frac{n\sqrt{n}}{logn})\)

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5,M=1e6+5;
int n,a[N],pri[M],hd[M],dp[M],q[M],l,r,ans=2000000000,e_num(1),pw[M];
vector<int>g[M];
struct edge{
int v,nxt,f;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
}
void run(int x)
{
memset(dp,0,sizeof(dp));
dp[q[l=r=1]=x]=1;
for(int i=2;i<=e_num;i++)
e[i].f=0;
while(l<=r)
{
int k=q[l];
++l;
for(int i=hd[k];i;i=e[i].nxt)
{
if(!dp[e[i].v])
{
e[i^1].f=1;
dp[e[i].v]=dp[k]+1;
q[++r]=e[i].v;
}
else if(!e[i].f)
{
// printf("%d %d %d\n",x,k,e[i].v);
ans=min(ans,dp[k]+dp[e[i].v]-1);
}
}
}
}
int main()
{
for(int i=2;i<M;i++)
{
// printf("%d\n",i);
if(!pri[i])
{
for(int j=1;j*i<M;j++)
{
pri[j*i]=1;
if(j%i==0)
pw[j]=pw[j/i]^1;
if(!pw[j])
g[j*i].push_back(i);
}
for(int j=1;j*i<M;j++)
pw[j]=0;
}
}
// puts("hjhakioi");
// for(int i=1;i<M;i++)
// {
// printf("%d\n",i);
// for(int j=0;j<g[i].size();j++)
// printf("%d ",g[i][j]);
// putchar('\n');
// }
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",a+i);
if(g[a[i]].size()==1)
{
add_edge(1,g[a[i]][0]);
add_edge(g[a[i]][0],1);
}
else if(g[a[i]].size())
{
add_edge(g[a[i]][0],g[a[i]][1]);
add_edge(g[a[i]][1],g[a[i]][0]);
}
else
{
printf("1");
return 0;
}
}
for(int i=1;i<=1000;i++)
run(i);
if(ans>n)
printf("-1");
else
printf("%d",ans);
}

[CF1325E] Ehab's REAL Number Theory Problem的更多相关文章

  1. [E. Ehab's REAL Number Theory Problem](https://codeforces.com/contest/1325/problem/E) 数论+图论 求最小环

    E. Ehab's REAL Number Theory Problem 数论+图论 求最小环 题目大意: 给你一个n大小的数列,数列里的每一个元素满足以下要求: 数据范围是:\(1<=a_i& ...

  2. 题解-Ehab's REAL Number Theory Problem

    Ehab's REAL Number Theory Problem 前置知识 质数 分解质因数 无向无权图最小环<讲> Ehab's REAL Number Theory Problem/ ...

  3. Number Theory Problem(The 2016 ACM-ICPC Asia China-Final Contest 找规律)

    题目: Mr. Panda is one of the top specialists on number theory all over the world. Now Mr. Panda is in ...

  4. Gym 101194A / UVALive 7897 - Number Theory Problem - [找规律水题][2016 EC-Final Problem A]

    题目链接: http://codeforces.com/gym/101194/attachments https://icpcarchive.ecs.baylor.edu/index.php?opti ...

  5. A. Number Theory Problem

    题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...

  6. How to solve the SVDI SN Number Display Problem

    Yesterday we have learn how to find the SVDI Serial Number, today one of customer from UK look our a ...

  7. Codeforces 1088E Ehab and a component choosing problem

    Ehab and a component choosing problem 如果有多个连接件那么这几个连接件一定是一样大的, 所以我们先找到值最大的连通块这个肯定是分数的答案. dp[ i ]表示对于 ...

  8. 2016级算法第二次上机-F.ModricWang's Number Theory II

    891 ModricWang's Number Theory II 思路 使得序列的最大公约数不为1,就是大于等于2,就是找到一个大于等于2的数,它能够整除序列中的所有数. 考虑使得一个数d整除数组中 ...

  9. Codeforces Round #525 (Div. 2)E. Ehab and a component choosing problem

    E. Ehab and a component choosing problem 题目链接:https://codeforces.com/contest/1088/problem/E 题意: 给出一个 ...

  10. Codeforces Round #525 (Div. 2)D. Ehab and another another xor problem

    D. Ehab and another another xor problem 题目链接:https://codeforces.com/contest/1088/problem/D Descripti ...

随机推荐

  1. What is TLS ?

    TLS intrduction TLS是一种保障数据传输安全的一种技术(方案),它在传输层工作. 想知道TLS和SSL的关系,先看看他们的历史: 人们遇到数据传输安全问题 1994 SSL 1.0 1 ...

  2. 《Python魔法大冒险》 001 序章:少年小鱼的不平凡一天

    在一个普通的城市里,生活着一个名叫小鱼的少年.他是一名初中生,但在班级里,他的学习成绩总是垫底.同学们经常取笑他,有时甚至戏称他为"倒数王". 放学后,小鱼一个人走在回家的路上,他 ...

  3. 搭建 QT6+OpenCv4.7+CMake的环境

    本文主要介绍如何搭建QT6+OpenCv的开发环境,基本流程如下 先安装CMake3.27.3,用来编译适用用QT的OpenCv的源码,安装完成后要配置系统的环境变量 安装Qt6的开发环境,并配置环境 ...

  4. Elasticsearch整合SpringBoot案例

    1.elasticsearch官方文档的使用与介绍 1.1.Rest客户端初始化官方文档链接: https://www.elastic.co/guide/en/elasticsearch/client ...

  5. golang .(type)语法

    一直弄不懂 .(type) 是啥,在 liteide 中输出 (1+1).(type),提示: use of .(type) outside type switch 于是搜索到这个文章: 作者:翔云翔 ...

  6. DB2复制表结构及数据

    在DB2数据库中,复制已经存在的表的结构及其数据.我们采用两步走方式:第一步先复制表结构,第二部拷贝数据. 第一步:复制表结构 方法一: Create table test_Rate as (sele ...

  7. QQ机器人整理合集

    QQ机器人有什么用呢? QQ机器人可以实现包括自动回复.定时推送.发送图片QQ机器人,营销圈用的比较多,可以开发各种自动功能等等.用其制作的QQ机器人程序 机器人框架+插件 小栗子机器人 官网:htt ...

  8. VS Code SSH

    VS Code SSH 连接需要下载 VS Code Server,这是因为 VS Code Server 是在远程服务器上运行的,而不是在本地计算机上运行的.每次连接到不同的远程服务器时,都需要下载 ...

  9. mac应用已损坏无法打开

    sudo xattr -r -d com.apple.quarantine /User/name/yourapp # '/User/name/yourapp' 替换成你自己要安装的 mac 应用地址 ...

  10. vcpkg manifest 的使用

    最近项目上要使用 CMakeLists 管理,由于 Windows 版本有依赖到 vcpkg 提供的库,所以需要使用 vcpkg manifest 来统一设置库的版本,方便后续维护 推荐一个文章,介绍 ...