数据结构和算法

现阶段的肤浅理解数据结构是各式各样的类型数据在内存中是如何构造的,原理是怎么样的。 了解了其本质后,在面对问题时候,根据数据结构利用算法计算可以最快,最有效的完成任务。通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。这些需要我自己不断主动的学习和积累!

算法的概念

算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。

算法是独立存在的一种解决问题的方法和思想。

对于算法而言,实现的语言并不重要,重要的是思想。

算法可以有不同的语言描述实现版本(如C描述、C++描述、Python描述等),我们现在是在用Python语言进行描述实现。

算法的五大特性

  1. 输入: 算法具有0个或多个输入
  2. 输出: 算法至少有1个或多个输出
  3. 有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
  4. 确定性:算法中的每一步都有确定的含义,不会出现二义性
  5. 可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完

eg.

如果 a+b+c=1000,且 a^2+b^2=c^2(a,b,c 为自然数),如何求出所有a、b、c可能的组合?

import time

start_time = time.time()

# 注意是三重循环
for a in range(0, 1001):
for b in range(0, 1001):
for c in range(0, 1001):
if a**2 + b**2 == c**2 and a+b+c == 1000:
print("a, b, c: %d, %d, %d" % (a, b, c)) end_time = time.time()
print("elapsed: %f" % (end_time - start_time))
print("complete!") a, b, c: 0, 500, 500
a, b, c: 200, 375, 425
a, b, c: 375, 200, 425
a, b, c: 500, 0, 500
elapsed: 214.583347
complete!

进过一次小小的修改

时间大大缩短

import time

start_time = time.time()

# 注意是两重循环
for a in range(0, 1001):
for b in range(0, 1001-a):
c = 1000 - a - b
if a**2 + b**2 == c**2:
print("a, b, c: %d, %d, %d" % (a, b, c)) end_time = time.time()
print("elapsed: %f" % (end_time - start_time))
print("complete!")
运行结果: a, b, c: 0, 500, 500
a, b, c: 200, 375, 425
a, b, c: 375, 200, 425
a, b, c: 500, 0, 500
elapsed: 0.182897
complete!

算法效率衡量

执行时间反应算法效率

对于同一问题,我们给出了两种解决算法,在两种算法的实现中,我们对程序执行的时间进行了测算,发现两段程序执行的时间相差悬殊(214.583347秒相比于0.182897秒),由此我们可以得出结论:实现算法程序的执行时间可以反应出算法的效率,即算法的优劣。

单靠时间值绝对可信吗?

假设我们将第二次尝试的算法程序运行在一台配置古老性能低下的计算机中,情况会如何?很可能运行的时间并不会比在我们的电脑中运行算法一的214.583347秒快多少。

单纯依靠运行的时间来比较算法的优劣并不一定是客观准确的!

程序的运行离不开计算机环境(包括硬件和操作系统),这些客观原因会影响程序运行的速度并反应在程序的执行时间上。那么如何才能客观的评判一个算法的优劣呢?

时间复杂度与“大O记法”

我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。

对于算法的时间效率,我们可以用“大O记法”来表示。

“大O记法”:对于单调的整数函数f,如果存在一个整数函数g和实常数c>0,使得对于充分大的n总有f(n)<=c*g(n),就说函数g是f的一个渐近函数(忽略常数),记为f(n)=O(g(n))。也就是说,在趋向无穷的极限意义下,函数f的增长速度受到函数g的约束,亦即函数f与函数g的特征相似。

时间复杂度:假设存在函数g,使得算法A处理规模为n的问题示例所用时间为T(n)=O(g(n)),则称O(g(n))为算法A的渐近时间复杂度,简称时间复杂度,记为T(n)

如何理解“大O记法”

对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。

最坏时间复杂度

分析算法时,存在几种可能的考虑:

  • 算法完成工作最少需要多少基本操作,即最优时间复杂度
  • 算法完成工作最多需要多少基本操作,即最坏时间复杂度
  • 算法完成工作平均需要多少基本操作,即平均时间复杂度

对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。

对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。

对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。

因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。

时间复杂度的几条基本计算规则

  1. 基本操作,即只有常数项,认为其时间复杂度为O(1)
  2. 顺序结构,时间复杂度按加法进行计算
  3. 循环结构,时间复杂度按乘法进行计算
  4. 分支结构,时间复杂度取最大值
  5. 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
  6. 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度

常见时间复杂度

执行次数函数举例 非正式术语
12 O(1) 常数阶
2n+3 O(n) 线性阶
3n2+2n+1 O(n2) 平方阶
5log2n+20 O(logn) 对数阶
2n+3nlog2n+19 O(nlogn) nlogn阶
6n3+2n2+3n+4 O(n3) 立方阶
2n O(2n) 指数阶

注意,经常将log2n(以2为底的对数)简写成logn

常见时间复杂度之间的关系

算法效率关系

所消耗的时间从小到大

O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)

在路上---学习篇(一)Python 数据结构和算法 (1)的更多相关文章

  1. python数据结构与算法

    最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...

  2. Python数据结构与算法--List和Dictionaries

    Lists 当实现 list 的数据结构的时候Python 的设计者有很多的选择. 每一个选择都有可能影响着 list 操作执行的快慢. 当然他们也试图优化一些不常见的操作. 但是当权衡的时候,它们还 ...

  3. Python数据结构与算法--算法分析

    在计算机科学中,算法分析(Analysis of algorithm)是分析执行一个给定算法需要消耗的计算资源数量(例如计算时间,存储器使用等)的过程.算法的效率或复杂度在理论上表示为一个函数.其定义 ...

  4. Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例

    本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法).分享给大家供大家参考,具体如下: # coding:utf-8 # Dijkstra算法--通过边实现松弛 # 指定一个 ...

  5. Python数据结构与算法之图的广度优先与深度优先搜索算法示例

    本文实例讲述了Python数据结构与算法之图的广度优先与深度优先搜索算法.分享给大家供大家参考,具体如下: 根据维基百科的伪代码实现: 广度优先BFS: 使用队列,集合 标记初始结点已被发现,放入队列 ...

  6. Python数据结构与算法设计总结篇

    1.Python数据结构篇 数据结构篇主要是阅读[Problem Solving with Python]( http://interactivepython.org/courselib/static ...

  7. Python数据结构与算法设计(总结篇)

    的确,正如偶像Bruce Eckel所说,"Life is short, you need Python"! 如果你正在考虑学Java还是Python的话,那就别想了,选Pytho ...

  8. GitHub上最火的、最值得前端学习的几个数据结构与算法项目!没有之一!

    Hello,大家好,我是你们的 前端章鱼猫. 简介 前端章鱼猫从 2016 年加入 GitHub,到现在的 2020 年,快整整 5 个年头了. 相信很多人都没有逛 GitHub 的习惯,因此总会有开 ...

  9. python数据结构与算法——链表

    具体的数据结构可以参考下面的这两篇博客: python 数据结构之单链表的实现: http://www.cnblogs.com/yupeng/p/3413763.html python 数据结构之双向 ...

  10. python数据结构与算法之问题求解实例

    关于问题求解,书中有一个实际的案例. 上图是一个交叉路口的模型,现在问题是,怎么安排红绿灯才可以保证相应的行驶路线互不交错. 第一步,就是把问题弄清楚. 怎么能让每一条行驶路线不冲突呢? 其实,就是给 ...

随机推荐

  1. 常见的 NoSQL 数据库有哪些?

    前言 今天我们来介绍一下工作开发中常见的一些NoSQL数据库及其基本特点.欢迎在评论区留下文章中没有介绍且好用的​NOSQL数据库. 什么是NOSQL数据库 非关系型数据库又被称为 NoSQL(Not ...

  2. pc 移动端 双端切换

    实现一个项目匹配多个端,使用vue.config自带的page 实现多个页面切换.官网介绍:https://cli.vuejs.org/zh/config/#pages 在创建的vue项目中找到 vu ...

  3. 解码Transformer:自注意力机制与编解码器机制详述与代码实现

    本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制.编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT.GPT等.文章旨在深入 ...

  4. 知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - Python 操作

    数据基于: 知识图谱(Knowledge Graph)- Neo4j 5.10.0 使用 - CQL - 太极拳传承谱系表 这是一个非常简单的web应用程序,它使用我们的Movie图形数据集来提供列表 ...

  5. Vue【原创】千位符输入框(不仅只是过滤器哦)

    最近和一个做金融的朋友讨论到千位符输入的问题,后来一想貌似自己项目中也会经常碰到金额数字这种输入框,要么自己做一个吧. 首先肯定要有一个正则表达式,也就是过滤器的方案里面常用的正则: 1 filter ...

  6. 这才叫 API 接口设计!

    API 接口设计 Token 设计 Token 是服务端生成的一串字符串,以作客户端进行请求的一个令牌,当第一次登录后,服务器生成一个 Token 便将此 Token 返回给客户端,以后客户端只需带上 ...

  7. 为什么创建 Redis 集群时会自动错开主从节点?

    哈喽大家好,我是咸鱼 在<一台服务器上部署 Redis 伪集群>这篇文章中,咸鱼在创建 Redis 集群时并没有明确指定哪个 Redis 实例将担任 master,哪个将担任 slave ...

  8. 【项目源码】基于JavaEE的健康管理系统

    随着网络技术的不断发展,网站的开发与运用变得更加广泛.这次采用java语言SSH框架(Spring,Struts,Hibernate)设计并实现了面向特定群体的健康管理平台.该网站主要有教师饮食管理. ...

  9. jQuery下拉框级联实现

    参考代码: //企业类别级联 function getCatalog(){ var name=document.getElementById("Lcata").value; var ...

  10. Solution Set -「ARC 111」

    「ARC 111A」Simple Math 2 Link. \(\lfloor \frac{10^N - kM^2}{M} \rfloor \equiv \lfloor \frac{10^N}{M} ...