LoRA大模型微调的利器
LoRA模型是小型的Stable Diffusion模型,它们对checkpoint模型进行微小的调整。它们的体积通常是检查点模型的10到100分之一。因为体积小,效果好,所以lora模型的使用程度比较高。
这是一篇面向从未使用过LoRA模型的初学者的教程。你将了解LoRA模型是什么,在哪里找到它们,以及如何在AUTOMATIC1111 GUI中使用它们。然后,你将在文章末尾找到一些LoRA模型的演示。
LoRA模型是什么?
LoRA(Low-Rank Adaptation)是一种微调Stable Diffusion模型的训练技术。
虽然我们已经有像Dreambooth和文本反转这样的训练技术。那么LoRA有什么用呢?
LoRA实际上可以看做是Dreambooth和文本反转embeddings的折中方案。Dreambooth功能虽然强大,但模型文件会比较大(2-7 GB)。文本反转非常小(约100 KB),但能做的事情比较少。
LoRA介于两者之间。它的文件大小更容易管理(2-200 MB),并且训练能力相当不错。
因为checkpoint比较大,所以硬盘空间存储会是一个问题。而LoRA是解决存储问题的优秀方案。
像文本反转一样,你不能单独使用LoRA模型。它必须与模型检查点文件一起使用。LoRA通过对配套的模型文件进行小的修改来改变风格。
LoRA是定制AI艺术模型的绝佳方式,而不会占用太多本地存储空间。
LoRA如何工作?
LoRA对Stable Diffusion模型中最关键的部分进行小的修改:交叉注意力层。研究人员发现,微调这部分模型就足以实现良好的训练。交叉注意力层是下面Stable Diffusion模型架构中的黄色部分。

交叉注意力层的权重以矩阵的形式排列。矩阵只是按列和行排列的一堆数字,就像Excel电子表格上一样。LoRA模型通过将自己的权重加到这些矩阵上来微调模型。
如果LoRA模型需要存储相同数量的权重,它们的文件怎么会更小呢?LoRA的技巧是将矩阵分解成两个更小的(低秩)矩阵。通过这样做,它可以存储更少的数字。让我们通过以下示例来说明。
假设模型有一个100行100列的矩阵。那是10000个数字(100x 100)需要存储在模型文件中。LoRA将矩阵分解成一个1000x2矩阵和一个2x100矩阵。那只有400个数字(100 x 2 + 2 x 100,如果矩阵够更大的话,LoRA模型会减少的更多。这就是为什么LoRA文件要小得多的原因。

在这个例子中,矩阵的秩是2。它比原始尺寸低得多,所以它们被称为低秩矩阵。秩可以低至1。
这种操作必定会带来数据上的缺失,但是在交叉注意力层来说,这些损失是无伤大雅的。所以Lora这种做法是可行的。
在哪里找到LoRA模型?
Civitai

寻找LoRA的首选地点是Civitai。该网站托管了大量LoRA模型的集合。应用LORA过滤器以仅查看LoRA模型。不过里面的大多数模型都是:女性肖像,动漫,现实主义插图风格等。
Hugging Face

Hugging Face是另一个LoRA库的好来源。你会发现更多种类的LoRA模型。但那里的LoRA模型可能没有C站多,并且也不太直观。因为没有图片预览。
如何使用LoRA?
这里,我将介绍如何在AUTOMATIC1111 Stable Diffusion GUI中使用LoRA模型。
AUTOMATIC1111原生支持LoRA。你不需要安装任何扩展。
第1步:安装LoRA模型
要在AUTOMATIC1111 webui中安装LoRA模型,请将模型文件放入以下文件夹。
stable-diffusion-webui/models/Lora
第2步:在提示中使用LoRA
要在AUTOMATIC1111 Stable Diffusion WebUI中添加带权重的LoRA,请在提示或否定提示中使用以下语法:
<lora: name: weight>
name是LoRA模型的名称。它可以与文件名不同。weight是应用于LoRA模型的权重。默认值为1。将其设置为0将禁用模型。
那么怎么知道lora的名字是什么呢?
其实我们并不需要手动输入lora的名字,我们只需要点击下面的lora标签:

你应该看到一个已安装的LoRA模型列表。单击你想要使用的模型。
LoRA短语将被插入到提示中。
就是这样!
使用LoRA的注意事项
你可以调整乘数以增强或调整效果。将乘数设置为0将禁用LoRA模型。你可以在0和1之间调整风格效果。
一些LoRA模型是使用Dreambooth训练的。你需要包括一个触发关键词才能使用LoRA模型。你可以在模型页面上找到触发关键词。
类似于嵌入,你可以同时使用多个LoRA模型。你也可以将它们与嵌入一起使用。
在AUTOMATIC1111中,LoRA短语不是提示的一部分。在应用LoRA模型后,它将被删除。这意味着你不能使用像[keyword1:keyword2: 0.8]这样的提示语法来使用他们。
实用的LoRA模型
这里介绍一些在实际应用中比较实用的Lora。
add_detail

谁不想要AI图像中更多的细节?细节调整器允许你增加或减少图像中的细节。现在,你可以调整你想要的细节量。
使用正LoRA权重来增加细节,使用负权重来减少细节。
add_saturation
这个lora可以给图片添加一些饱和度,效果如下:

add_brightness
这个lora可以用来控制图片的亮度:

总结
LoRA模型是checkpoint模型的小型修改器。你可以通过在提示中包含一个短语轻松地在AUTOMATIC1111中使用它们。
我将在以后的文章中告诉你如何自己来训练一个LoRA模型。
LoRA大模型微调的利器的更多相关文章
- DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...
- Torchvision模型微调
Torchvision模型微调 本文将深入探讨如何对 torchvision 模型进行微调和特征提取,所有这些模型都已经预先在1000类的magenet数据集上训练完成.将深入介绍如何使用几个现代的C ...
- 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅
摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...
- [Pytorch框架] 4.1 Fine tuning 模型微调
文章目录 4.1 Fine tuning 模型微调 4.1.1 什么是微调 为什么要微调 迁移学习 Transfer Learning 二者关系 4.1.2 如何微调 4.1.3 注意事项 4.1.3 ...
- 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00
武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...
- PowerDesigner 学习:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- PowerDesigner 15学习笔记:十大模型及五大分类
个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...
- 文心大模型api使用
文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...
- AI大模型学习了解
# 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...
- 千亿参数开源大模型 BLOOM 背后的技术
假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...
随机推荐
- 树莓派安装OpenCv
树莓派安装OpenCv 更换树莓派软件源 我们选择将树莓派的软件源切换到清华大学镜像站,据笔者亲测,通过此站可以顺利安装openCV. 切换软件源需要修改两个软件源配置文件的内容. 第一个需要修改是「 ...
- input标签 只能输入纯数字
<input type="number" pattern="number" onkeyup="value=value.replace(/[^\d ...
- 「Pygors跨平台GUI」2:安装MinGW-w64、MSYS2还是WSL2
「Pygors系列」一句话导读: MinGW-w64只有编译器,MSYS2带着更新环境,WSL2实用性比较高 历史与渊源 Windows平台 Linux平台 二进制兼容 WSL2:运行Linux程 ...
- 3.2 逻辑设计和硬件控制语言HCL
在硬件设计中,用电子电路来计算对位进行运算的函数,以及在各种存储器单元中存储位.大多数现代电路技术都是用信号线上的高电压或低电压来表示不同的位值.在当前的技术中,逻辑1是用1.0伏特左右的高电压表示的 ...
- oeasy教您玩转vim - 81 - # 宏macro的进阶
宏的进阶 macro 回忆 关于宏,上次有4个要点 qa 开始录制宏 q 结束录制宏 @a 应用宏 qA 追加录制宏 甚至可以编辑宏 "ap 把宏作为文本粘贴出来 编辑之后 " ...
- 题解:CF1985E Secret Box
设长宽高分别为 \(a,b,c\). 由题意可轻松的得到以下求方案数公式. \((x-a+1)(y-b+1)(z-c+1)\) 然后根据这个公式模拟即可. AC Code
- ssh 转发 和 切换图形化
适用环境 宿主机连接到一台服务器是,服务器系统里面的浏览器点击http网页卡顿,那么这时可以通过ssh将端口转发到宿主机 使用宿主机的浏览器点击,则不会很卡顿. [root@foundation1 ~ ...
- pytest + 登录禅道 :自动提交bug-编辑bug-确认bug-解决bug-关闭bug
pytest + 登录禅道 :自动提交bug-编辑bug-确认bug-解决bug-关闭bug 一.Pycharm中创建项目结构 1.新建一个工程,工程名称自己定义,如:zentao 2.在工程的根目 ...
- 【Vue2】Computed 计算属性
计算属性在编写的时候是一个方法 但是在调用的时候作为属性使用 <!DOCTYPE html> <html lang="en"> <head> & ...
- 【转载】sun的rpc ——rpcbind(nfs文件系统中的rpc)
原文地址: https://blog.csdn.net/wangpeng138375/article/details/8169071 ================================= ...