OpenVino快速落地部署教程
OpenVino快速落地部署教程
Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。本教程适用于Yolov5-7.0,直接跑Yolov5为6FPS,使用OpenVino后为30FPS,未来将会出一系列其他模型(Paddle等)的OpenVino部署教程,测试平台——Intel Nuc 11代i5处理器
一、安装OpenVino
进入OpenVino官网
https://docs.openvino.ai/2024/get-started/install-openvino.html
选择自己喜欢的下载方式,本教程采用OpenVino-2022.3.1版本
二、模型转换
通过Yolov5自带的export.py文件将.pt转为.onnx格式
python3 export.py --weights xxxx/xxxxx.pt --include onnx --batch_size 1 --opset 10 PS:如果出现转换失败的提示,如:opset 10不支持或是onnx版本问题请重新搭建yolov5环境,按照requirements.txt里库的最低版本进行安装
使用OpenVino工具链将.onnx转为xml、bin模型
mo --input_model xxx/xxx.onnx PS:如果openvino环境安装成功将可以在yolov5的环境中直接使用mo命令
PS:转换完成后请一定用模型可视化工具查看转换是否正确
三、采用以下代码快速部署
import openvino.runtime as ov
import cv2
import numpy as np
import openvino.preprocess as op
class ObjectDetector:
def __init__(self, model_xml, model_bin, labels, device="CPU"):
self.core = ov.Core()
self.model = self.core.read_model(model_xml, model_bin)
self.labels = labels
self.preprocess_model()
self.compiled_model = self.core.compile_model(self.model, device)
self.infer_request = self.compiled_model.create_infer_request()
def preprocess_model(self):
premodel = op.PrePostProcessor(self.model)
premodel.input().tensor().set_element_type(ov.Type.u8).set_layout(ov.Layout("NHWC")).set_color_format(op.ColorFormat.BGR)
premodel.input().preprocess().convert_element_type(ov.Type.f32).convert_color(op.ColorFormat.RGB).scale([255., 255., 255.])
premodel.input().model().set_layout(ov.Layout("NCHW"))
premodel.output(0).tensor().set_element_type(ov.Type.f32)
self.model = premodel.build()
def infer(self, img):
detections = []
img_re, dw, dh = self.resizeimg(img, (640, 640))
input_tensor = np.expand_dims(img_re, 0)
self.infer_request.infer({0: input_tensor})
output = self.infer_request.get_output_tensor(0)
detections = self.process_output(output.data[0])
return detections
def process_output(self, detections):
boxes = []
class_ids = []
confidences = []
for prediction in detections:
confidence = prediction[4].item()
if confidence >= 0.6:
classes_scores = prediction[5:]
_, _, _, max_indx = cv2.minMaxLoc(classes_scores)
class_id = max_indx[1]
if (classes_scores[class_id] > .25):
confidences.append(confidence)
class_ids.append(class_id)
x, y, w, h = prediction[0].item(), prediction[1].item(), prediction[2].item(), prediction[3].item()
xmin = x - (w / 2)
ymin = y - (h / 2)
box = np.array([xmin, ymin, w, h])
boxes.append(box)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.5)
detections = []
for i in indexes:
j = i.item()
detections.append({"class_index": class_ids[j], "confidence": confidences[j], "box": boxes[j]})
return detections
def resizeimg(self, image, new_shape):
old_size = image.shape[:2]
ratio = float(new_shape[-1] / max(old_size))
new_size = tuple([int(x * ratio) for x in old_size])
image = cv2.resize(image, (new_size[1], new_size[0]))
delta_w = new_shape[1] - new_size[1]
delta_h = new_shape[0] - new_size[0]
color = [100, 100, 100]
new_im = cv2.copyMakeBorder(image, 0, delta_h, 0, delta_w, cv2.BORDER_CONSTANT, value=color)
return new_im, delta_w, delta_h
if __name__ == "__main__":
# Example usage:
labels = [
"right",
"warning",
"left",
"people",
"10",
"pullover",
"10off",
"green",
"red"
]
detector = ObjectDetector("/home/nuc/MyCar/yolov5-7.0/best.xml", "/home/nuc/MyCar/yolov5-7.0/best.bin", labels, "CPU")
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
detections = detector.infer(frame)
for detection in detections:
classId = detection["class_index"]
confidence = detection["confidence"]
label = labels[classId]
box = detection["box"]
area = box[2] * box[3]
print(f"Detected object: {label}, Confidence: {confidence}, Area: {area}")
cap.release()
OpenVino快速落地部署教程的更多相关文章
- Twitter开源的Heron快速安装部署教程
什么是Heron? Twitter使用Storm实时分析海量数据已经有好几年了,并在2011年将其开源.该项目稍后开始在Apache基金会孵化,并在2015年秋天成为顶级项目.Storm以季度为发布周 ...
- Hexo快速部署教程
一直有建立博客的需要,使用过Wordpress动态博客,一直访问速度比较慢,刚开始以为是空间域名的解析的问题,尝试使用Hexo静态博客,部署后感觉速度正常很多,特意发文快速部署教程 准备 本文是在wi ...
- 【gitlab】gitlab快速部署教程
gitlab快速部署教程 部署环境 Ubuntu 16.04(亲测可用) 开始部署 安装依赖 sudo apt-get install curl openssh-server ca-certifica ...
- 使用ASP.NET MVC、Rabbit WeixinSDK和Azure快速开发部署微信后台
(此文章同时发表在本人微信公众号"dotNET每日精华文章",欢迎右边二维码来关注.) 题记:公众号后台系统和数据都基本准备妥当了,可以来分享下我是如何开发本微信公众号的后台系统了 ...
- 写给新手看的Flask+uwsgi+Nginx+Ubuntu部署教程
学习 Flask,写完一个 Flask 应用需要部署的时候,就想着折腾自己的服务器.根据搜索的教程照做,对于原理一知半解,磕磕碰碰,只要运行起来了,谢天谢地然后不再折腾了,到下一次还需要部署时,这样的 ...
- Kubernetes 1.3.1 快速单机部署
Kubernetes发展到今天, 在官网上已经有非常多的成熟部署方案, 但是由于墙的原因, 最简单的MiniKube都无法进行, 参考了以下两篇文章后, 终于安装成功. k8s-1.13版本测试环境搭 ...
- Eclipse中安装JRebel热部署教程
Eclipse中安装JRebel热部署教程 前言 Eclipse安装JRebel插件可快速实现热部署,节省了大量重启时间,提高开发效率. 本文只介绍Eclipse安装JRebel插件版本 ...
- Flask+uwsgi+Nginx+Ubuntu部署教程
学习 Flask,写完一个 Flask 应用需要部署的时候,就想着折腾自己的服务器.根据搜索的教程照做,对于原理一知半解,磕磕碰碰,只要运行起来了,谢天谢地然后不再折腾了,到下一次还需要部署时,这样的 ...
- GitLab + Jenkins + Harbor 工具链快速落地指南
目录 一.今天想干啥? 二.今天干点啥? 三.今天怎么干? 3.1.常规打法 3.2.不走寻常路 四.开干吧! 4.1.工具链部署 4.2.网络配置 4.3.验证工具链部署结果 4.3.1.GitLa ...
- CRL快速开发框架系列教程十三(嵌套查询)
本系列目录 CRL快速开发框架系列教程一(Code First数据表不需再关心) CRL快速开发框架系列教程二(基于Lambda表达式查询) CRL快速开发框架系列教程三(更新数据) CRL快速开发框 ...
随机推荐
- 嵌入式ARM端测试手册——全志T3+Logos FPGA开发板(上)
前 言 本指导文档适用开发环境: Windows开发环境:Windows 7 64bit.Windows 10 64bit Linux开发环境:Ubuntu18.04.4 64bit 虚拟机:VMwa ...
- PixiJS源码分析系列: 第一章 从最简单的例子入手
从最简单的例子入手分析 PixiJS 源码 我一般是以使用角度作为切入点查看分析源码,例子中用到什么类,什么方法,再入源码. 高屋建瓴的角度咱也做不到啊,毕竟水平有限 pixijs 的源码之前折腾了半 ...
- 使用GSAP制作动画视频
GSAP 3Blue1Brown给我留下了深刻印象.利用动画制作视频,内容简洁,演示清晰.前两天刚好碰到一件事,我就顺便学习了一下怎么用代码做动画. 以javascrip为例,有两个动画引擎,GSAP ...
- Swift开发基础02-流程控制
if-slse let age = 4 if age >= 22 { print("Get married") } else if age >= 18 { print( ...
- 对于同一个项目,同时将其git到GitHub和Gitee
对于同一个项目,你可以同时将其git到GitHub和Gitee.这通常通过配置多个远程仓库地址来实现.以下是一步步的操作指南: 一.在GitHub和Gitee上创建仓库 GitHub: 登录GitHu ...
- 02-springboot配置
目录 1,前言 2,YAML介绍 3,获取yml配置文件内容 4,springboot的配置文件 5,springboot使用@Value实现映射 6,@PropertySource.@ImportR ...
- Django 实现文件上传下载API
Django 实现文件上传下载API by:授客 QQ:1033553122 欢迎加入全国软件测试交流QQ群7156436 开发环境 Win 10 Python 3.5.4 Django- ...
- ABC349
A link 其实,有人赢比赛,就有人输比赛,一加一减,不管进行多少场比赛,最后所有人的分数和一定是\(0\). 那么知道\(n-1\)个人的分数和,就可以知道第\(n\)个人的了. 点击查看代码 # ...
- hmall | 引入ES实现高效搜索与同步双写
在gitee.飞书.百度云.B站中,黑马都没有上传该部分资料,以下皆为个人观点,如有纰漏欢迎指正 1.先把item-service中的searchcontroller抽出来,抽到一个模块中并将其设为h ...
- 免费使用TasteWP一键搭建线上临时WordPress网站
虽然用宝塔面板或者1Panel面板可以非常快速的搭建一个WordPress网站,但是有时候只想测试下我设计的页面或者开发的主题和插件,又得买服务器,绑定域名,安装程序,搭建起来也过于浪费时间了:再或者 ...