1.Focal Loss

focal loss是最初由何恺明提出的,最初用于图像领域解决数据不平衡造成的模型性能问题。本文试图从交叉熵损失函数出发,分析数据不平衡问题,focal loss与交叉熵损失函数的对比,给出focal loss有效性的解释。

  1. Focal Loss的引入主要是为了解决难易样本数量不平衡(注意,有区别于正负样本数量不平衡)的问题,实际可以使用的范围非常广泛。
  2. 该损失函数来源于论文Focal Loss for Dense Object Detection,作者利用它改善了图像物体检测的效果。不过Focal Loss完全是一个通用性的Loss,因为在 NLP中,也存在大量的类别不平衡的任务。
  3. 最经典的就是序列标注任务中类别是严重不平衡的,比如在命名实体识别中,显然一句话里边实体是比非实体要少得多,这就是一个类别严重不平衡的情况。

参考链接:
https://blog.csdn.net/fly_time2012/article/details/123428695

https://zhuanlan.zhihu.com/p/266023273

2.Circle Loss

  1. 深度特征学习有两种基本范式,分别是使用类标签和使用正负样本对标签进行学习。使用类标签时一般需要用分类损失函数(比如 softmax + cross entropy)优化样本和权重向量之间的相似度;使用样对标签时,通常用度量损失函数(比如 triplet损失)来优化样本之间的相似度。然而这两种方式均存在优化缺乏灵活性和收敛状态不明确的缺点。
  2. 因此,Circle Loss 设计了一个更灵活的优化途径,通向一个更明确的优化目标。该方法来源于论文Circle Loss: A
    Unified Perspective of Pair Similarity Optimization

常用优化方法和新提出的优化方法之间的对比图示如下。


Circle Loss 非常简单,而它对深度特征学习的意义却非常本质,表现为以下三个方面:

  • 统一的(广义)损失函数。从统一的相似度配对优化角度出发,它为两种基本学习范式(即使用类别标签和使用样本对标签的学习)提出了一种统一的损失函数;
  • 梯度反向传播会根据权重来调整幅度大小。那些优化状态不佳的相似度分数,会被分配更大的权重因子,并因此获得更大的更新梯度。如上图所示,在Circle Loss 中,A、B、C 三个状态对应的优化各有不同;
  • 明确的收敛状态。在这个圆形的决策边界上,Circle Loss 更偏爱特定的收敛状态(如图中的
    T)。这种明确的优化目标有利于提高特征鉴别力。

参考链接:
https://blog.csdn.net/cxx654/article/details/122158148


样本数量不平衡问题方案(Focal Loss & Circle Loss)的更多相关文章

  1. PCA样本数量少于矩阵维数

    %test pcaA=[3,7,1,4,1;5,5,2,1,3;4,2,4,5,3];S=cov(A);T=cov(A');[ds,vs]=eig(S)[dt,vt]=eig(T) 样本数量少于矩阵维 ...

  2. L1 loss, L2 loss以及Smooth L1 Loss的对比

    总结对比下\(L_1\) 损失函数,\(L_2\) 损失函数以及\(\text{Smooth} L_1\) 损失函数的优缺点. 均方误差MSE (\(L_2\) Loss) 均方误差(Mean Squ ...

  3. R语言-选择样本数量

    功效分析:可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量,也可以在给定置信水平的情况下,计算某样本量内可以检测到的给定效应值的概率 1.t检验 案例:使用手机和司机反应时间的实验 l ...

  4. [loss]Triphard loss优雅的写法

    之前一直自己手写各种triphard,triplet损失函数, 写的比较暴力,然后今天一个学长给我在github上看了一个别人的triphard的写法,一开始没看懂,用的pytorch函数没怎么见过, ...

  5. L1 loss L2 loss

    https://www.letslearnai.com/2018/03/10/what-are-l1-and-l2-loss-functions.html http://rishy.github.io ...

  6. 【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

    Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡(注意:这有别于正负样本数量不均衡问题)问题.下面以目标检测应用场景来说明. 一些 ...

  7. Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)

    前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...

  8. ROC,AUC,Precision,Recall,F1的介绍与计算(转)

    1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...

  9. ROC,AUC,Precision,Recall,F1的介绍与计算

    1. 基本概念 1.1 ROC与AUC ROC曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,ROC曲线称为受试者工作特征曲线 (receiver operatin ...

  10. How Do Vision Transformers Work?[2202.06709] - 论文研读系列(2) 个人笔记

    [论文简析]How Do Vision Transformers Work?[2202.06709] 论文题目:How Do Vision Transformers Work? 论文地址:http:/ ...

随机推荐

  1. Hugging News #0203: 3.3 MB 的文生图模型、RHLF 训练框架、手机上能跑的 Transformer

    每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...

  2. 解决ttrss(Tiny Tiny RSS)中fever无法使用的问题

    问题描述 在ttrss刚搭建好的时候,进行了如下操作: 随后键入了密码(fever密码) 最后,按照官方给的提示,在Fluent Reader中测试,弹出如下错误信息: 解决方案 复制官方给的链接,删 ...

  3. Google C++编程规范(Google C++ Style Guide)

    参考链接: Google 代码规范 C++总结 Google 开源项目风格指南--中文版 Google C++ Style Guide是一份不错的C++编码指南,我制作了一张比较全面的说明图,可以在短 ...

  4. 【每日一题】29.maze (BFS 进阶)

    补题链接:Here 本题代码由贺佬完成 这道题基本算一道 BFS 进阶题,有少许细节要小心 (WA1发.. #include <bits/stdc++.h> #define x first ...

  5. 从青铜到王者,揭秘 Serverless 自动化函数最佳配置

    [福利活动]1分钟Serverless部署PHP商城实验班上线啦! 带你体验如何使用 Serverless 应用引擎 SAE 快速部署一个PHP商城,并体验 SAE 带来的弹性伸缩.应用监控等强大能力 ...

  6. 【转载】内存基本概念-slab算法

    Linux内存管理之slab 2:slab API https://blog.csdn.net/lqy971966/article/details/119801912 1. 为什么有了Buddy(伙伴 ...

  7. C# 加解密

    1.  Md5 /// <summary> /// 不可逆加密 /// 1 防止被篡改 /// 2 防止明文存储 /// 3 防止抵赖,数字签名 /// </summary> ...

  8. JVM 性能调优 及 为什么要减少 Full GC

    本文为博主原创,未经允许不得转载: 系统上线压测,需要了解系统的瓶颈以及吞吐量,并根据压测数据进行对应的优化. 对压测进行 JVM 性能优化,有两条思路: 第一种情况 : 使用压测工具 jmeter  ...

  9. springboot启动流程 (3) 自动装配

    在SpringBoot中,EnableAutoConfiguration注解用于开启自动装配功能. 本文将详细分析该注解的工作流程. EnableAutoConfiguration注解 启用Sprin ...

  10. Web API接口返回实现类集合的姿势了解

    大家好,我是沙漠尽头的狼. 一. 问题描述 如下图,定义两个子类Student和Employ,都继承自抽象类PersonBase: public abstract class PersonBase { ...