POJ2417 Discrete Logging【BSGS】(模板题)
<题目链接>
题目大意:
P是素数,然后分别给你P,B,N三个数,然你求出满足这个式子的L的最小值 : BL== N (mod P)。
解题分析:
这题是bsgs算法的模板题。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
//baby_step giant_step
// a^x = b (mod n) n为素数,a,b < n
// 求解上式 0<=x < n的解
#define MOD 76543
int hs[MOD],head[MOD],next[MOD],id[MOD],top;
void insert(int x,int y)
{
int k = x%MOD;
hs[top] = x, id[top] = y, next[top] = head[k], head[k] = top++;
} int find(int x)
{
int k = x%MOD;
for(int i = head[k]; i != -; i = next[i])
if(hs[i] == x)
return id[i];
return -;
} int BSGS(int a,int b,int n)
{
memset(head,-,sizeof(head));
top = ;
if(b == )return ;
int m = sqrt(n*1.0), j;
long long x = , p = ;
for(int i = ; i < m; ++i, p = p*a%n)insert(p*b%n,i);
for(long long i = m; ;i += m)
{
if( (j = find(x = x*p%n)) != - )return i-j;
if(i > n)break;
}
return -;
} int main()
{
int a,b,n;
while(scanf("%d%d%d",&n,&a,&b) == )
{
int ans = BSGS(a,b,n);
if(ans == -)printf("no solution\n");
else printf("%d\n",ans);
}
return ;
}
2018-08-09
POJ2417 Discrete Logging【BSGS】(模板题)的更多相关文章
- poj2417 Discrete Logging BSGS裸题
给a^x == b (mod c)求满足的最小正整数x, 用BSGS求,令m=ceil(sqrt(m)),x=im-j,那么a^(im)=ba^j%p;, 我们先枚举j求出所有的ba^j%p,1< ...
- POJ2417 Discrete Logging
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- POJ2417 Discrete Logging【BSGS】
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5577 Accepted: 2494 ...
- POJ2417 Discrete Logging | A,C互质的bsgs算法
题目: 给出A,B,C 求最小的x使得Ax=B (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首 ...
- 【BZOJ3239】Discrete Logging BSGS
[BZOJ3239]Discrete Logging Description Given a prime P, 2 <= P < 231, an integer B, 2 <= B ...
- [POJ2417]Discrete Logging(指数级同余方程)
Discrete Logging Given a prime P, 2 <= P < 2 31, an integer B, 2 <= B < P, and an intege ...
- POJ 2417 Discrete Logging BSGS
http://poj.org/problem?id=2417 BSGS 大步小步法( baby step giant step ) sqrt( p )的复杂度求出 ( a^x ) % p = b % ...
- 【BSGS】BZOJ3239 Discrete Logging
3239: Discrete Logging Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 729 Solved: 485[Submit][Statu ...
- Discrete Logging
Discrete Logging Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5865 Accepted: 2618 ...
随机推荐
- JavaScript学习 - 基础(八) - DOM 节点 添加/删除/修改/属性值操作
html代码: <!--添加/删除/修改 --> <div id="a1"> <button id="a2" onclick=&q ...
- 详解Jquery选择器
1.常见的选择器 id,类,标签选择器. $("#a1") $(".myclass") $("div") 2.组合选择器 $("# ...
- L-BFGS算法(转载)
转载链接:http://blog.csdn.net/itplus/article/details/21897715 前面的拟牛顿法.DFP.BFGS.L-BFGS算法简短总结一下就是: 牛顿法不仅使用 ...
- springboot系列十、springboot整合redis、多redis数据源配置
一.简介 Redis 的数据库的整合在 java 里面提供的官方工具包:jedis,所以即便你现在使用的是 SpringBoot,那么也继续使用此开发包. 二.redidTemplate操作 在 Sp ...
- c++ 简单静态链表
所有结点(结构体变量)都是在程序中定义的,不是临时开辟的,也不能用完后释放,这种链表称为静态链表.对各结点既可以通过上一个结点的next指针去访问,也可以直接通过结构体变量名s1, s2, s3去访问 ...
- nagios系列(五)之nagios图形显示的配置及自定义插件检测密码是否修改详解
nagios图形显示的配置 在服务端安装相关软件 #1.图形显示管理的依赖库 yum install cairo pango zlib zlib-devel freetype freetype-dev ...
- 转载:《理解OAuth 2.0》 阮一峰
原文:http://www.ruanyifeng.com/blog/2014/05/oauth_2_0.html OAuth是一个关于授权(authorization)的开放网络标准,在全世界得到广泛 ...
- 转载:编译安装Nginx(1.5.1)《深入理解Nginx》(陶辉)
原文:https://book.2cto.com/201304/19618.html 1.5 configure详解 可以看出,configure命令至关重要,下文将详细介绍如何使用configure ...
- Android:注册登录
注册登录的实现 先在layout里新建一个xml文件: //login.xml <?xml version="1.0" encoding="utf-8"? ...
- Day5-----------------------系统监控
1.top 命令 查看终端信息 who 显示终端用户有哪些 bash 开启终端进程 PID:进程身份证 buffer:缓冲区 cache:高速缓存 进程:动起来的文件,CPU调用运行的过程 2.fre ...