SP6779 GSS7
GSS7解题报告
前言
唔,有点恶心哪,废了两个多小时debug
思路
很容易看出傻子都知道,这个是树链剖分+线段树的裸题,只不过是恶心了点,这里重点讲一下细节问题
线段树
做过GSS系列的都应该很熟悉了
线段树维护的前缀最大子段和,后缀最大子段和,和区间最大子段和
那么我们就可以很容易的写出他合并orpushup
void pushup(node &a,node x,node y) {
a.ans=max(max(x.ans,y.ans),x.rk+y.lk);
a.lk=max(x.sum+y.lk,x.lk);
a.rk=max(y.sum+x.rk,y.rk);
a.sum= x.sum +y.sum;
}
这里写成这种形式对下面的跳链比较友好
查询也是比较套路的 返回一个node,如果在mid两边,再次合并,这里就不多说了
树剖跳链
修改操作:
跳链,修改,和平常一样
查询操作:
x到y的路径是一条链子
如果我们把它伸直,捋平咯,那他就是一串数列
那我们就可以一块一块的合并喽
想一下我们是怎么跳的
是从链的两端跳,一直跳到他们相遇
那我们就维护两端的信息,也就是从起点到现在的x的区间和从现在的y到终点的区间
最后再合并起来,就是整个区间的信息喽
不过要注意合并时候的次序和l,r的交换
也许不swap而分类讨论就没这个东西了吧
我们的一条重链是从浅处到深处依次排列
我们跳的时候是从深处到浅出跳(从两端逼近中间)
所以合并就要考虑清楚了
是合并x,y还是合并y,x
文字说起来不太明白,我举个栗子吧
2号权值为-1,其他权值为1,要从4号到5号点
我们先从5号节点跳到1号所属重链
在跳之前我们先查询一下5号的值,得到一个node,和x
合并
我们再从4号节点跳到1号所属重链
在跳之前我们先查询一下4号的值,又得到一个node,和y合并
然后交换x,y(别问我为什么)
现在x,y都到了一条链子上了(注意前提)
我们考虑一下两端区间的方向
有一个是反着的,我们翻过来其中一个然后全部合并起来就好了
这里给出我的两组简单但易错数据(反正错了我好多次)
5
-1 1 1 1 1
1 5
1 2
2 3
2 4
1
1 4 5
ans=2
5
-3 -2 -1 -2 -3
1 2
2 3
1 4
4 5
2
2 3 4 2
1 2 5
ans=6
代码
#include <bits/stdc++.h>
#define FOR(i,a,b) for(int i=a;i<=b;++i)
using namespace std;
const int N=6e5+7;
const int inf=0x3f3f3f3f;
inline int read() {
int x=0,f=1;char s=getchar();
for(;s>'9'||s<'0';s=getchar()) if(s=='-') f=-1;
for(;s>='0'&&s<='9';s=getchar()) x=x*10+s-'0';
return x*f;
}
vector<int> G[N];
int n,m;
int a[N],w[N],idx[N],top[N],son[N],siz[N],f[N],dep[N],cnt;
inline int max(const int &x,const int &y) {return x>y?x:y;}
void dfs1(int u,int fa) {
f[u]=fa;
siz[u]=1;
dep[u]=dep[fa]+1;
for(std::vector<int>::iterator it=G[u].begin();it!=G[u].end();++it) {
if(fa==*it) continue;
dfs1(*it,u);
siz[u]+=siz[*it];
if(siz[son[u]]<siz[*it]) son[u]=*it;
}
}
void dfs2(int u,int topf) {
idx[u]=++cnt;
a[cnt]=w[u];
top[u]=topf;
if(!son[u]) return;
dfs2(son[u],topf);
for(std::vector<int>::iterator it=G[u].begin();it!=G[u].end();++it)
if(!idx[*it]) dfs2(*it,*it);
}
namespace seg_tree {
#define ls rt<<1
#define rs rt<<1|1
struct node {
int l,r,siz,lk,rk,ans,lazy,sum;
}e[N<<2];
inline void pushup(node &a,node x,node y) {
a.ans=max(max(x.ans,y.ans),x.rk+y.lk);
a.lk=max(x.sum+y.lk,x.lk);
a.rk=max(y.sum+x.rk,y.rk);
a.sum= x.sum +y.sum;
}
void build(int l,int r,int rt) {
e[rt].l=l,e[rt].r=r,e[rt].siz=r-l+1;
e[rt].lazy=inf;
if(l==r) {
e[rt].sum=a[l];
e[rt].lk=e[rt].rk=e[rt].ans=max(a[l],0);
return;
}
int mid=(l+r)>>1;
build(l,mid,ls);
build(mid+1,r,rs);
pushup(e[rt],e[ls],e[rs]);
}
inline void tag(int rt,int k) {
e[rt].sum=e[rt].siz*k;
if(k>=0) e[rt].lk=e[rt].rk=e[rt].ans=e[rt].sum;
else e[rt].lk=e[rt].rk=e[rt].ans=0;
e[rt].lazy=k;
}
inline void pushdown(int rt) {
if(e[rt].lazy!=inf) {
tag(ls,e[rt].lazy);
tag(rs,e[rt].lazy);
e[rt].lazy=inf;
}
}
void modify(int L,int R,int k,int rt) {
if(L<=e[rt].l&&e[rt].r<=R) {
tag(rt,k);
return;
}
pushdown(rt);
int mid=(e[rt].l+e[rt].r)>>1;
if(L<=mid) modify(L,R,k,ls);
if(R>mid) modify(L,R,k,rs);
pushup(e[rt],e[ls],e[rs]);
}
node query(int L,int R,int rt) {
if(L<=e[rt].l&&e[rt].r<=R) return e[rt];
pushdown(rt);
int mid=(e[rt].l+e[rt].r)>>1;
if(L<=mid && R>mid) {
node a=query(L,R,ls),b=query(L,R,rs),c;
pushup(c,a,b);
return c;
}
if(L<=mid) return query(L,R,ls);
if(R>mid) return query(L,R,rs);
}
}
void QQ(int x,int y) {
seg_tree::node tot_x={},tot_y={};
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) swap(x,y),swap(tot_x,tot_y);
seg_tree::node tmp=seg_tree::query(idx[top[x]],idx[x],1);
seg_tree::pushup(tot_x,tmp,tot_x);
x=f[top[x]];
}
if(dep[x]>dep[y]) swap(x,y),swap(tot_x,tot_y);
seg_tree::node tmp=seg_tree::query(idx[x],idx[y],1);
swap(tot_x.lk,tot_x.rk);
seg_tree::pushup(tot_x,tot_x,tmp);
seg_tree::pushup(tot_y,tot_x,tot_y);
printf("%d\n",tot_y.ans);
}
void CC(int x,int y,int c) {
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) swap(x,y);
seg_tree::modify(idx[top[x]],idx[x],c,1);
x=f[top[x]];
}
if(dep[x]>dep[y]) swap(x,y);
seg_tree::modify(idx[x],idx[y],c,1);
}
int main() {
n=read();
FOR(i,1,n) w[i]=read();
FOR(i,2,n) {
int x=read(),y=read();
G[x].push_back(y);
G[y].push_back(x);
}
dfs1(1,0);
dfs2(1,1);
seg_tree::build(1,n,1);
m=read();
FOR(i,1,m) {
int opt=read(),x=read(),y=read(),z;
if(opt==1) QQ(x,y);
else z=read(),CC(x,y,z);
}
return 0;
}
SP6779 GSS7的更多相关文章
- SP6779 GSS7 - Can you answer these queries VII
纯数据结构题,没有思维难度.直接用线段树求最大子段和的方法完成树上路径的合并.注意链上合并顺序要符合序列的前后顺序. #include <cstdio> #include <cstr ...
- SP6779 GSS7 - Can you answer these queries VII(线段树,树链剖分)
水题,只是坑点多,\(tag\)为\(0\)时可能也要\(pushdown\),所以要\(bool\)标记是否需要.最后树链剖分询问时注意线段有向!!! #include <cstring> ...
- 题解 SP6779 【GSS7 - Can you answer these queries VII】
题目传送门 题目大意 给出一个\(n\)个点的树,每个点有权值.有\(m\)次操作,每次要么查询一条链上的最大子段和,要么把一条链的权值都修改为一个常数. \(n,m\le 10^5\) 思路 如果是 ...
- GSS7 spoj 6779. Can you answer these queries VII 树链剖分+线段树
GSS7Can you answer these queries VII 给出一棵树,树的节点有权值,有两种操作: 1.询问节点x,y的路径上最大子段和,可以为空 2.把节点x,y的路径上所有节点的权 ...
- SPOJ GSS7 - Can you answer these queries VII
板的不能再板,链剖+线段树或者是LCT随便维护. 感觉唯一要注意的是跳链的时候要对$x$向上跳和$y$向上跳的情况分开讨论,而不能直接$swap$,因为只有两段接触的端点才能相互合并,而且每一次向上跳 ...
- SPOJ GSS7 Can you answer these queries VII ——树链剖分 线段树
[题目分析] 问题放到了树上,直接链剖+线段树搞一搞. 调了300行+. (还是码力不够) [代码] #include <cstdio> #include <cstring> ...
- Solution -「SP 6779」GSS7
\(\mathcal{Description}\) 给定一棵 \(n\) 个点的带点权树,\(q\) 次操作: 路径点权赋值. 询问路径最大子段和(可以为空). \(n,q\le10^5\). ...
- 激!GSS系列
#include <cstdio> ; ; inline int max(int, int); inline int getint(); inline void putint(int); ...
- OAF_文件系列4_实现OAF上传显示数据库动态图片Image(案例)
20150805 Created By BaoXinjian
随机推荐
- word之删除图标目录之间的空行
在生成图表目录时,发现Office word图表目录中多个标题之间的空行无法删除,我是自己建的标签,比如“图1-”.“图2-”…….“表1-”.“表2-”…… 发现“图1-”.“图2-”…….“表1- ...
- java的移位运算详解(举例说明)
1)java中无符号右移:>>>,下面是一个int型的负数,然后每次移动一位. int k = -0x123;System.out.println(Integer.toBinaryS ...
- hdu3511 圆的扫描线
http://blog.csdn.net/firenet1/article/details/47041145 #include <iostream> #include <algori ...
- sitecore系列教程之营销人员和技术人员如何策划与消费者的对话以提升体验?
“每次良好的交谈都要从良好的倾听开始.” - 未知 你是如何听取网站访问者的?你是在倾听还是只是回复? 拥有内容管理系统只是良好网站战略的一个要素.毕竟,内容必须是动态的,及时的和相关的. 当网站访问 ...
- xshell的一些基本操作
挺全面的一篇文章,没事可以看看. (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下以字母a开头的所有文件 l ...
- HDU 2175 汉诺塔IX (递推)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2175 1,2,...,n表示n个盘子.数字大盘子就大.n个盘子放在第1根柱子上.大盘不能放在小盘上. ...
- linux OS与SQL修改时区,系统时间
linux修改系统时间和linux查看时区.修改时区的方法 一.查看和修改Linux的时区 1. 查看当前时区命令 : "date -R" 2. 修改设置Linux服务器时区方法 ...
- unittest和pytest的区别
一.用例编写规则 1.unittest提供了test cases.test suites.test fixtures.test runner相关的类,让测试更加明确.方便.可控.使用unittest编 ...
- Linux shell 时间操作(取昨天 前天)
1. 取今天时间 $date -d "now" +%Y-%m-%d 2. 取昨天时间 $date -d "yesterday" +%Y-%m-%d $date ...
- axios post参数为空
今天在360浏览器访问时后台接收不到参数,但是用谷歌浏览器就能收到传入的值.