(转) AI突破性论文及代码实现汇总
本文转自:https://zhuanlan.zhihu.com/p/25191377
AI突破性论文及代码实现汇总

What Can AI Do For You?
“The business plans of the next 10,000 startups are easy to forecast: Take X and add AI.” — Kevin Kelly
"A hundred years ago electricity transformed countless industries; 20 years ago the internet did, too. Artificial intelligence is about to do the same. To take advantage, companies need to understand what AI can do." — Andrew Ng
If you are a newcomer to the AI, the first question you may have is "What AI can do now and how it relates to my strategies?" Here are the breakthrough AI papers and CODE for any industry.
Deep Learning BOOKS
0.0 Deep Learning
[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning" An MIT Press book. (2016).
0.1 Deep Reinforcement Learning
[1] Richard S. Sutton and Andrew G. Barto. "Reinforcement Learning: An Introduction (2nd Edition)"
[2] Pieter Abbeel and John Schulman | Open AI / Berkeley AI Research Lab. "Deep Reinforcement Learning through Policy Optimization"
[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas. "Learning to learn by gradient descent by gradient descent"
CODE Learning to Learn in TensorFlow
arXiv Learning to Learn for Global Optimization of Black Box Functions
Deep Learning PAPERS
Papers Reading Roadmap
[0] "Deep Learning Papers Reading Roadmap"
CODE Download All Papers
1.1 Neural Information Processing Systems Conference - NIPS 2016
[1] Full Videos "NIPS 2016 : 57 Episodes"
[2] CODE "All Code Implementations for NIPS 2016 papers"
1.2 GitXiv : arXiv + Github + Links + Discussion
[3] arXiv + CODE "Implementations of Some of the Best arXiv Papers"
1.3 Wasserstein GAN
[4] arXiv "Wasserstein GAN"
[5] CODE "Code accompanying the paper "Wasserstein GAN""
1.4 The Predictron
[6] arXiv "The Predictron: End-To-End Learning and Planning"
[7] CODE "A TensorFlow implementation of "The Predictron: End-To-End Learning and Planning""
1.5 Meta-RL
[8] arXiv "Learning to reinforcement learn"
[9] CODE "Meta-RL""
1.6 Neural Architecture Search with RL
[10] arXiv "Neural Architecture Search with Reinforcement Learning"
1.7 Superior Generalizability and Interpretability
[11] arXiv "Making Neural Programming Architectures Generalize via Recursion"
1.8 Seq2seq RL GANs for Dialogue Generation
[12] arXiv "Adversarial Learning for Neural Dialogue Generation"
1.9 DeepMind’s PathNet: Modular Deep Learning Architecture for AGI
[13] arXiv "PathNet: Evolution Channels Gradient Descent in Super Neural Networks"
1.10 Outrageously Large Neural Networks
[14] arXiv "Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer"
Deep Learning TUTORIALS
2.0 Implementation of Reinforcement Learning Algorithms
2.1 Python Data Science Handbook
[1] CODE "Jupyter Notebooks for the Python Data Science Handbook" by Jake Vanderplas.
2.2 Learn How to Build State of the Art Models
[2] Video + CODE "Practical Deep Learning For Coders, Part 1" by Jeremy Howard.
2.3 NIPS 2016 Tutorial: Generative Adversarial Networks
[3] arXiv "NIPS 2016 Tutorial: Generative Adversarial Networks" by Ian Goodfellow.
2.4 Data Science IPython Notebooks
Deep Learning TOOLS
3.0 TensorFlow
TensorFlow is an Open Source Software Library for Machine Intelligence: https://www.tensorflow.org
[0] Mart ́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane ́, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Vie ́gas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. "WhitePaper - TensorFlow: Large-scale machine learning on heterogeneous systems"
CODE Installation
CODE TensorFlow Tutorial and Examples for Beginners
CODE Models built with TensorFlow
3.1 OpenAI Gym
The OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms OpenAI Gym: A toolkit for developing and comparing reinforcement learning algorithms
[1] Greg Brockman and Vicki Cheung and Ludwig Pettersson and Jonas Schneider and John Schulman and Jie Tang and Wojciech Zaremba. "OpenAI Gym WhitePaper"
CODE Installation of the gym open-source library
CODE How to create new environments
3.2 Universe
Universe: A software platform for measuring and training an AI's general intelligence across the world's supply of games, websites and other applications.Universe (blog).
CODE Installation
3.3 DyNet: The Dynamic Neural Network Toolkit
DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsing, machine translation, morphological inflection.
[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"
CODE Installation
3.4 Edward: A Python library for Probabilistic Modeling, Inference and Criticism
DyNet is a neural network library designed to be efficient when run on either CPU or GPU. DyNet has been used to build state-of-the-art systems for syntactic parsing, machine translation, morphological inflection.
[2] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, Pengcheng Yin. "DyNet: The Dynamic Neural Network Toolkit"
CODE Installation
3.5 DeepMind Lab: A customisable 3D platform for agent-based AI research
Edward is a Python library for probabilistic modeling, inference and criticism fusing three fields: Bayesian statistics and machine learning, deep learning, and probabilistic programming. Runs on TensorFlow.
[3] Dustin Tran, Matthew D. Hoffman, Rif A. Saurous, Eugene Brevdo, Kevin Murphy, David M. Blei. "Deep Probabilistic Programming"
CODE Installation
Others
4.0 Robotics:Deep Reinforcement Learning
[1]"Extending the OpenAI Gym for robotics"
CODE "Gym Gazebo"
4.1 Image Recognition:Very Deep Convolutional Networks
[2]"Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning"
CODE"Keras-InceptionV4n"
4.2 Full Resolution Image Compression:Recurrent Neural Networks
[3]"Full Resolution Image Compression with Recurrent Neural Networks"
CODE"Compression"
原文链接:ceobillionaire/WHAT-AI-CAN-DO-FOR-YOU
相关文章
PS.极视角高校计算机视觉算法邀请赛目前正在报名中,欢迎各高校在读学生报名参加,大奖+商业项目参与机会+数据库等你来拿!!!咨询报名请加小助手(微信号:Extreme-Vision)
(转) AI突破性论文及代码实现汇总的更多相关文章
- 10K+,深度学习论文、代码最全汇总!
我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么 ...
- [ZZ]计算机视觉、机器学习相关领域论文和源代码大集合
原文地址:[ZZ]计算机视觉.机器学习相关领域论文和源代码大集合作者:计算机视觉与模式 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码 ...
- Context Encoder论文及代码解读
经过秋招和毕业论文的折磨,提交完论文終稿的那一刻总算觉得有多余的时间来搞自己的事情. 研究论文做的是图像修复相关,这里对基于深度学习的图像修复方面的论文和代码进行整理,也算是研究生方向有一个比较好的结 ...
- NLP-Progress记录NLP最新数据集、论文和代码: 助你紧跟NLP前沿
Github https://github.com/sebastianruder/NLP-progress 官方网址 https://nlpprogress.com/ NLP-Progress 同时涵 ...
- 让 AI 为你写代码 - 体验 Github Copilot
前几天在群里看到有大神分享 Copoilot AI 写代码,看了几个截图有点不敢相信自己的眼睛.今天赶紧自己也来体验一下 Copoilot AI 写代码到底有多神奇. 申请 现在 Copoilot 还 ...
- 前端项目 node8升级到node16,代码升级汇总
背景 公司的项目是vue项目,环境是node@8x版本的,最近我创建react hook的项目,发现至少需要node14才支持,打开官网才发现node都已经到16版本了.失策啊,失策.于是直接升级到最 ...
- StarGAN论文及代码理解
StarGAN的引入是为了解决多领域间的转换问题的,之前的CycleGAN等只能解决两个领域之间的转换,那么对于含有C个领域转换而言,需要学习C*(C-1)个模型,但StarGAN仅需要学习一个,而且 ...
- r-cnn学习(五):SmoothL1LossLayer论文与代码的结合理解
A Loss Function for Learning Region Proposals 训练RPN时,只对两种anchor给予正标签:和gt_box有着最高的IoU && IoU超 ...
- LATEX论文排版学习资源汇总
一.国内出版的LaTeX书籍 不管是ctex还是chinatex论坛,很多TeX前辈和使用者都给大家提供了很多咨询帮助,同时,也分享了很多很多学习上的方法与技巧.一般都推荐入门的用户先阅读一本入门书, ...
随机推荐
- 排序(Sort)-----插入排序
声明:文中动画转载自https://blog.csdn.net/qq_34374664/article/details/79545940 1.插入排序简介 插入排序(InsertSort) ...
- verilog代码基础
verilog拼接符用法: https://zhidao.baidu.com/question/531343285.html wire [31:0] bit_mask = { {8{be[3]}}, ...
- 设计模式之Builder(建造者)(转)
Builder模式定义: 将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. Builder模式是一步一步创建一个复杂的对象,它允许用户可以只通过指定复杂对象的类型和内容就可以 ...
- mongoDB3.4的sharding集群搭建及JavaAPI的简易使用
第一部分 在搭建mongoDB之前,我们要考虑几个小问题: 1.我们搭建集群的目的是什么?是多备份提高容错和系统可用性还是横向拓展存储大规模数据还是两者兼有? 如果是为了多备份那么选择replicat ...
- Numpy 基本除法运算和模运算
基本算术运算符+.-和*隐式关联着通用函数add.subtract和multiply 在数组的除法运算中涉及三个通用函数divide.true_divide和floor_division,以及两个对应 ...
- webpack 创建vue项目过程中遇到的问题和解决方法
目录 1 webpack简介 2 webpack实现多个输入输出多个html 3 webpack 中的module下rules 下的use和loader选项 4 webpack 文件更新,如何使页面 ...
- 数据库-MySQL入门
什么是数据库? 一定方式储存在一起.能与多个用户共享.具有尽可能小的冗余度.与应用程序彼此独立的数据集合 数据库管理系统(简称DBMS):是为管理数据库而设计的电脑软件系统,一般具有存储.截取.安全保 ...
- 判断闰年C语言版
#include<stdio.h> int isLeap(int year) { // 必须先判断是平年的情况 后判断闰年的情况 == && year%!=) || yea ...
- thinkphp 随笔
'TMPL_CACHE_ON' => false,//禁止模板编译缓存 'HTML_CACHE_ON' => false,//禁止静态缓存
- 利用cookies跳过登陆验证码
前言在爬取某些网页时,登陆界面时经常遇到的一个坎,而现在大多数的网站在登陆时都会要求用户填写验证码.当然,我们可以设计一套机器学习的算法去破解验证码,然而,验证码的形式多种多样,稍微变一下(有些甚至是 ...