To 洛谷.2982 慢下来Slowing down

题目描述

Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N move from the barn to her private pasture. The pastures are organized as a tree, with the barn being on pasture 1. Exactly N-1 cow unidirectional paths connect the pastures; directly connected pastures have exactly one path. Path i connects pastures A_i and B_i (1 <= A_i <= N; 1 <= B_i <= N).

Cow i has a private pasture P_i (1 <= P_i <= N). The barn's small door lets only one cow exit at a time; and the patient cows wait until their predecessor arrives at her private pasture. First cow 1 exits and moves to pasture P_1. Then cow 2 exits and goes to pasture P_2, and so on.

While cow i walks to P_i she might or might not pass through a pasture that already contains an eating cow. When a cow is present in a pasture, cow i walks slower than usual to prevent annoying her friend.


Consider the following pasture network, where the number between
parentheses indicates the pastures' owner. 1 (3)
/ \
(1) 4 3 (5)
/ \
(2) 2 5 (4) First, cow 1 walks to her pasture: 1 (3)
/ \
[1] 4* 3 (5)
/ \
(2) 2 5 (4) When cow 2 moves to her pasture, she first passes into the barn's
pasture, pasture 1. Then she sneaks around cow 1 in pasture 4 before
arriving at her own pasture. 1 (3)
/ \
[1] 4* 3 (5)
/ \
[2] 2* 5 (4) Cow 3 doesn't get far at all -- she lounges in the barn's pasture, #1. 1* [3]
/ \
[1] 4* 3 (5)
/ \
[2] 2* 5 (4) Cow 4 must slow for pasture 1 and 4 on her way to pasture 5: 1* [3]
/ \
[1] 4* 3 (5)
/ \
[2] 2* 5* [4] Cow 5 slows for cow 3 in pasture 1 and then enters her own private pasture: 1* [3]
/ \
[1] 4* 3*[5]
/ \
[2] 2* 5* [4]

FJ would like to know how many times each cow has to slow down.

每天Farmer John的N头奶牛(1 <= N <= 100000,编号1…N)从粮仓走向他的自己的牧场。牧场构成了一棵树,粮仓在1号牧场。恰好有N-1条道路直接连接着牧场,使得牧场之间都恰好有一条路径相连。第i条路连接着A_i,B_i,(1 <= A_i <= N; 1 <= B_i <= N)。 奶牛们每人有一个私人牧场P_i (1 <= P_i <= N)。粮仓的门每次只能让一只奶牛离开。耐心的奶牛们会等到他们的前面的朋友们到达了自己的私人牧场后才离开。首先奶牛1离开,前往P_1;然后是奶牛2,以此类推。

当奶牛i走向牧场P_i时候,他可能会经过正在吃草的同伴旁。当路过已经有奶牛的牧场时,奶牛i会放慢自己的速度,防止打扰他的朋友。

FJ想要知道奶牛们总共要放慢多少次速度。

输入输出格式

输入格式:

  • Line 1: Line 1 contains a single integer: N

  • Lines 2..N: Line i+1 contains two space-separated integers: A_i and B_i

  • Lines N+1..N+N: line N+i contains a single integer: P_i

输出格式:

  • Lines 1..N: Line i contains the number of times cow i has to slow down.

输入输出样例

输入样例#1:

5
1 4
5 4
1 3
2 4
4
2
1
5
3
输出样例#1:

0
1
0
2
1

代码:

 #include<cstdio>
#include<cctype>
using namespace std;
const int N=; int n,ENum,cnt,H[N<<],Sum[N<<],Dfn[N],Size[N];
struct Edge
{
int to,nxt;
}e[N<<]; void read(int &now)
{
now=;char c=getchar();
for(;!isdigit(c);c=getchar());
for(;isdigit(c);c=getchar())
now=(now<<)+(now<<)+c-'';
} void AddEdge(int u,int v)
{
e[++ENum].to = v;
e[ENum].nxt = H[u];
H[u] = ENum;
} void DFS(int x)
{
Size[x]=;//根的子树的大小(包括自己)
Dfn[x]=++cnt;//Dfn[i]:i在dfs序中的下标
for(int i=H[x];i;i=e[i].nxt)
{
int to=e[i].to;
if(Dfn[to]) continue;
DFS(to);
Size[x]+=Size[to];
}
} void PushUp(int rt)
{
Sum[rt]=Sum[rt<<]+Sum[rt<<|];
}
void PushDown(int rt)
{
if(!Sum[rt]) return;
Sum[rt<<]+=Sum[rt];
Sum[rt<<|]+=Sum[rt];
Sum[rt]=;
}
void ModifySum(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R)
{
++Sum[rt];//区间修改时 针对本题 懒标记+1
return;
}
PushDown(rt);
int m=(l+r)>>;
if(L<=m) ModifySum(l,m,rt<<,L,R);
if(m<R) ModifySum(m+,r,rt<<|,L,R);
//PushUp(rt); 不需要进行PushUp!!
}
int QuerySum(int l,int r,int rt,int p)
{
if(l==r) return Sum[rt];
PushDown(rt);
int m=(l+r)>>,res=;
if(p<=m) res+=QuerySum(l,m,rt<<,p);
else res+=QuerySum(m+,r,rt<<|,p);
return res;
} int main()
{
read(n);
for(int i=;i<n;i++)
{
int a,b;
read(a);read(b);
AddEdge(a,b);
AddEdge(b,a);
}
DFS();
// for(int i=1;i<=n;i++)
// printf("%d:dfn:%d size:%d\n",i,Dfn[i],Size[i]);
for(int i=;i<=n;i++)
{
int a;
read(a);
printf("%d\n",QuerySum(,n,,Dfn[a]));//先经过后更改
ModifySum(,n,,Dfn[a],Dfn[a]+Size[a]-);//单点查询 区间修改
}
return ;
}

洛谷P2982 [USACO10FEB]慢下来Slowing down(线段树 DFS序 区间增减 单点查询)的更多相关文章

  1. 洛谷P2982 [USACO10FEB]慢下来Slowing down [2017年四月计划 树状数组01]

    P2982 [USACO10FEB]慢下来Slowing down 题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) c ...

  2. 洛谷P2982 [USACO10FEB]慢下来Slowing down

    题目 题目大意 :给出一棵树,节点有点权,求每个节点的祖先中点权小于该节点的结点的个数 . 思路如下 : 从根节点开始,对树进行深度优先遍历. 当进行到节点 i 时,有: $\text{i}$ ​的祖 ...

  3. 洛谷 P2982 [USACO10FEB]慢下来Slowing down

    题目描述 Every day each of Farmer John's N (1 <= N <= 100,000) cows conveniently numbered 1..N mov ...

  4. Bzoj1018/洛谷P4246 [SHOI2008]堵塞的交通(线段树分治+并查集)

    题面 Bzoj 洛谷 题解 考虑用并查集维护图的连通性,接着用线段树分治对每个修改进行分治. 具体来说,就是用一个时间轴表示图的状态,用线段树维护,对于一条边,我们判断如果他的存在时间正好在这个区间内 ...

  5. 洛谷 P1083 借教室【二分+差分/线段树】

    二分mid,然后用1~mid的操作在差分序列上加减,最后把差分序列前缀和起来,看是否有有超过初始r值的 #include<iostream> #include<cstdio> ...

  6. 【洛谷4219】[BJOI2014]大融合(线段树分治)

    题目: 洛谷4219 分析: 很明显,查询的是删掉某条边后两端点所在连通块大小的乘积. 有加边和删边,想到LCT.但是我不会用LCT查连通块大小啊.果断弃了 有加边和删边,还跟连通性有关,于是开始yy ...

  7. 【洛谷2982】[Usaco2010 Feb]慢下来Slowdown(dfs序+线段树)

    题目: 洛谷2982 分析: 这道题最重要的是想明白一点:牛\(i\)走到以后只对\(P_i\)的子树产生影响 知道这个以后,就可以想到在线维护每个牧场已经被"影响"了多少次(也就 ...

  8. 线段树+Dfs序【p2982】[USACO10FEB]慢下来Slowing down

    Description 每天Farmer John的N头奶牛(1 <= N <= 100000,编号1-N)从粮仓走向他的自己的牧场.牧场构成了一棵树,粮仓在1号牧场.恰好有N-1条道路直 ...

  9. 洛谷P4577 [FJOI2018]领导集团问题(dp 线段树合并)

    题意 题目链接 Sol 首先不难想到一个dp,设\(f[i][j]\)表示\(i\)的子树内选择的最小值至少为\(j\)的最大个数 转移的时候维护一个后缀\(mx\)然后直接加 因为后缀max是单调不 ...

随机推荐

  1. SpringMVC使用HttpInvoker发布远程服务

    参考这篇文章https://www.cnblogs.com/fanqisoft/p/10283156.html 将提供者配置类中的 1 @Bean 2 public HessianServiceExp ...

  2. 【逆向知识】VS程序反汇编找main函数

    工具:OllyICE 调试快捷键说明: F2键:设置断点,只要在光标定位的位置 F4键:程序运行到光标处 F7键:单步步入.功能同单步步过(F8)类似,区别是遇到 CALL 等子程序时会进入其中,进入 ...

  3. Python3 日期时间 相关模块(time(时间) / datatime(日期时间) / calendar(日历))

    Python3 日期时间 相关模块(time(时间) / datatime(日期时间) / calendar(日历)) 本文由 Luzhuo 编写,转发请保留该信息. 原文: http://blog. ...

  4. Linux内存管理1---内存寻址

    1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本 ...

  5. oracle数据库自增主键重复

    select max(t.id) from T_PLAT_ENUM_VALUE tdrop sequence T_PLAT_ENUM_VALUE;create sequence T_PLAT_ENUM ...

  6. WPF中添加Winform用户自定义控件

    过程:创建WPF工程->创建Winform用户自定义控件工程->WPF中引用控件->添加到Xaml页面 1.首先在WPF工程的解决方案上右击选择添加新建项目: 选择Windows窗体 ...

  7. C# Excel使用NPOI

    程序处理excel使用using Microsoft.Office.Interop.Excel方式,运行程序需要电脑安装excel,而且excel版本还需要一样,使用起来不方便.使用NPOI不用电脑安 ...

  8. ajax post 传递数组参数

    1.前言 此文章仅作为记录,方便查阅. 2.代码 javascript: var idArr = ['one','two','Three']; $.ajax({ type: 'POST', data ...

  9. hdu3415 单调队列模板题

    比较裸的单调队列 先求前缀和,枚举所有结束位置1~n+k即可 #include<iostream> #include<cstdio> #include<cstring&g ...

  10. python 全栈开发,Day116(可迭代对象,type创建动态类,偏函数,面向对象的封装,获取外键数据,组合搜索,领域驱动设计(DDD))

    昨日内容回顾 1. 三个类 ChangeList,封装列表页面需要的所有数据. StarkConfig,生成URL和视图对应关系 + 默认配置 AdminSite,用于保存 数据库类 和 处理该类的对 ...