In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons each). Each button has a light. When a button is pressed, that button and each of its (up to four) neighbors above, below, right and left, has the state of its light reversed. (If on, the light is turned off; if off, the light is turned on.) Buttons in the corners change the state of 3 buttons; buttons on an edge change the state of 4 buttons and other buttons change the state of 5. For example, if the buttons marked X on the left below were to be pressed,the display would change to the image on the right.

The aim of the game is, starting from any initial set of
lights on in the display, to press buttons to get the display to a state
where all lights are off. When adjacent buttons are pressed, the action
of one button can undo the effect of another. For instance, in the
display below, pressing buttons marked X in the left display results in
the right display.Note that the buttons in row 2 column 3 and row 2
column 5 both change the state of the button in row 2 column 4,so that,
in the end, its state is unchanged.

Note:

1. It does not matter what order the buttons are pressed.

2. If a button is pressed a second time, it exactly cancels
the effect of the first press, so no button ever need be pressed more
than once.

3. As illustrated in the second diagram, all the lights in
the first row may be turned off, by pressing the corresponding buttons
in the second row. By repeating this process in each row, all the lights
in the first

four rows may be turned out. Similarly, by pressing buttons
in columns 2, 3 ?, all lights in the first 5 columns may be turned off.

Write a program to solve the puzzle.

Input

The first line of the input is a positive integer n which is the
number of puzzles that follow. Each puzzle will be five lines, each of
which has six 0 or 1 separated by one or more spaces. A 0 indicates that
the light is off, while a 1 indicates that the light is on initially.

Output

For each puzzle, the output consists of a line with the string:
"PUZZLE #m", where m is the index of the puzzle in the input file.
Following that line, is a puzzle-like display (in the same format as the
input) . In this case, 1's indicate buttons that must be pressed to
solve the puzzle, while 0 indicate buttons, which are not pressed. There
should be exactly one space between each 0 or 1 in the output
puzzle-like display.

Sample Input

2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0

Sample Output

PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1 大佬博客 : https://blog.csdn.net/FromATP/article/details/53966305
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long lint;
const double PI = acos(-1.0);
const int INF = ;
const int maxn = ; // 暴力枚举 :
/*
int mp[20][20], cal[20][20], vis[20][20];
int n, m;
int dr[5][2] = { {0,1}, {0,-1}, {1,0}, {-1,0}, {0,0} };
int mi = INF; int fz(int x, int y)
{
int t = mp[x][y];
for(int i = 0; i< 5; i++)
{
int xx = x + dr[i][0];
int yy = y + dr[i][1];
if(xx <= n && xx > 0 && yy <= m && yy >0)
t += vis[xx][yy];
}
return t%2;
} int dfs()
{ for(int j = 2; j <= n; j++)
for(int k = 1; k <= m; k++)
{
if(fz(j-1, k)) vis[j][k] = 1;
}
for(int j = 1; j <= m; j++)
{
if(fz(n, j))
return -1;
}
int cnt = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
cnt += vis[i][j];
return cnt; } int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
int ans = 0;
while(ans++ < T)
{
mi = INF;
n = 5;
m = 6;
for(int i = 1; i <=n; i++)
for(int j = 1; j <=m ; j++)
cin >> mp[i][j];
int flag = 0;
for(int i = 0; i < 1<<m ; i++)
{
memset(vis, 0, sizeof(vis));
for(int j = 1; j <= m; j++)
vis[1][m-j+1] = i>>(j-1) & 1; int cnt = dfs();
if(cnt < mi && cnt >= 0)
{
flag =1;
mi = cnt;
memcpy(cal, vis, sizeof(vis));
} }
cout << "PUZZLE #" << ans << endl;
if(flag)
{
for(int i = 1; i <=n; i++)
{
for(int j = 1; j <= m; j++)
{
if(j != 1) cout << " ";
cout << cal[i][j];
} cout << endl;
}
} else cout << "IMPOSSIBLE" << endl;
} return 0;
}
*/
// 高斯消元法 : #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int n=;
int tt,a[n+][n+];
void gauss()//保证有解
{
int r;
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)if(a[j][i]){r=j;break;}
if(r!=i)for(int j=;j<=n+;j++) swap(a[i][j],a[r][j]);
for(int j=i+;j<=n;j++)if(a[j][i])
for(int k=i;k<=n+;k++)
a[j][k]^=a[i][k];
}
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
if(a[i][j])a[i][n+]^=a[j][n+];
}
int main()
{
scanf("%d",&tt);
int t=;
while(tt--)
{
t++;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i][n+]);
a[i][i]=;
if(i%!=)a[i][i-]=;
if(i%!=)a[i][i+]=;
if(i>)a[i][i-]=;
if(i<)a[i][i+]=;
}
gauss();
printf("PUZZLE #%d\n",t);
for(int i=;i<=n;i++)
{
if(!(i%))printf("%d\n",a[i][n+]);
else printf("%d ",a[i][n+]);
}
}
return ;
}

EXTENDED LIGHTS OUT (高斯消元)的更多相关文章

  1. poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8481   Accepted: 5479 Description In an ...

  2. POJ 1222 EXTENDED LIGHTS OUT (高斯消元)

    题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...

  3. POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组

    http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...

  4. [poj1222]EXTENDED LIGHTS OUT(高斯消元)

    题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...

  5. POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]

    题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...

  6. BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )

    高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...

  7. BZOJ1770:[USACO]lights 燈(高斯消元,DFS)

    Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...

  8. [luoguP2962] [USACO09NOV]灯Lights(高斯消元 + dfs)

    传送门 先进行高斯消元 因为要求最少的开关次数,那么: 对于关键元,我们可以通过带入消元求出, 对于自由元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1 #include <cmath ...

  9. BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]

    题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...

随机推荐

  1. mvn install package区别

    package是把jar打到本项目的target下,而install时把target下的jar安装到本地仓库,供其他项目使用

  2. WCF访问超时:HTTP 请求已超过xx:yy分配的超时。为此操作分配的时间可能是较长超时的一部分。

    在服务端设置时间长些 <client> <endpoint address="http://43.98.49.189:5700/UPJWCFServcie.svc" ...

  3. wordpress站内搜索结果页URL伪静态如何操作

    站内搜索页面的优化一直被很多人忽略,只是按cms自带的默认设置,其实搜索结果页是一块宝藏,url重写是提升的重要一步.之前我们写过帝国CMS搜索页伪静态实现方法,那么,wordpress站内搜索结果页 ...

  4. docker+jenkins+maven简单部署

    构建jar包 1.拉取jenkins容器景象 docker pull docker.io/jenkins/jenkins 2.配置映射目录,创建一个容器 mkdir /data/jenkins doc ...

  5. SQL SERVER 2016研究五

    SQL SERVER 2016 Row Level Security 以前:SQL server 的安全模型只能针对于它的表和列, 如果要针对于行,就需要创建存储过程或者函数来处理. 如何设置这个行级 ...

  6. 转换区别json

    private Date EndDate ; private Instant xxxxdate; private LocalDateTime localDateTime; public static ...

  7. (转)以太坊(Ethereum)创世揭秘 以太坊(Ethereum)创世揭秘

    什么是以太坊(Ethereum) 以太坊(Ethereum)是一个基于区块链技术,允许任何人构建和使用去中心化应用的区块链平台.像比特币一样,以太坊是开源的,并由来自全世界的支持者们共同维护.与比特币 ...

  8. Sql注入基础原理介绍

    说明:文章所有内容均截选自实验楼教程[Sql注入基础原理介绍]~ 实验原理 Sql 注入攻击是通过将恶意的 Sql 查询或添加语句插入到应用的输入参数中,再在后台 Sql 服务器上解析执行进行的攻击, ...

  9. [LeetCode] 162. Find Peak Element_Medium tag: Binary Search

    A peak element is an element that is greater than its neighbors. Given an input array nums, where nu ...

  10. [LeetCode] 876. Middle of the Linked List_Easy tag: Linked List ** slow, fast pointers

    Given a non-empty, singly linked list with head node head, return a middle node of linked list. If t ...