EXTENDED LIGHTS OUT (高斯消元)
The aim of the game is, starting from any initial set of
lights on in the display, to press buttons to get the display to a state
where all lights are off. When adjacent buttons are pressed, the action
of one button can undo the effect of another. For instance, in the
display below, pressing buttons marked X in the left display results in
the right display.Note that the buttons in row 2 column 3 and row 2
column 5 both change the state of the button in row 2 column 4,so that,
in the end, its state is unchanged.
Note:
1. It does not matter what order the buttons are pressed.
2. If a button is pressed a second time, it exactly cancels
the effect of the first press, so no button ever need be pressed more
than once.
3. As illustrated in the second diagram, all the lights in
the first row may be turned off, by pressing the corresponding buttons
in the second row. By repeating this process in each row, all the lights
in the first
four rows may be turned out. Similarly, by pressing buttons
in columns 2, 3 ?, all lights in the first 5 columns may be turned off.
Write a program to solve the puzzle.
Input
number of puzzles that follow. Each puzzle will be five lines, each of
which has six 0 or 1 separated by one or more spaces. A 0 indicates that
the light is off, while a 1 indicates that the light is on initially.
Output
"PUZZLE #m", where m is the index of the puzzle in the input file.
Following that line, is a puzzle-like display (in the same format as the
input) . In this case, 1's indicate buttons that must be pressed to
solve the puzzle, while 0 indicate buttons, which are not pressed. There
should be exactly one space between each 0 or 1 in the output
puzzle-like display.
Sample Input
2
0 1 1 0 1 0
1 0 0 1 1 1
0 0 1 0 0 1
1 0 0 1 0 1
0 1 1 1 0 0
0 0 1 0 1 0
1 0 1 0 1 1
0 0 1 0 1 1
1 0 1 1 0 0
0 1 0 1 0 0
Sample Output
PUZZLE #1
1 0 1 0 0 1
1 1 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
0 1 0 0 0 0
PUZZLE #2
1 0 0 1 1 1
1 1 0 0 0 0
0 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 0 1 大佬博客 : https://blog.csdn.net/FromATP/article/details/53966305
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
using namespace std;
typedef long long lint;
const double PI = acos(-1.0);
const int INF = ;
const int maxn = ; // 暴力枚举 :
/*
int mp[20][20], cal[20][20], vis[20][20];
int n, m;
int dr[5][2] = { {0,1}, {0,-1}, {1,0}, {-1,0}, {0,0} };
int mi = INF; int fz(int x, int y)
{
int t = mp[x][y];
for(int i = 0; i< 5; i++)
{
int xx = x + dr[i][0];
int yy = y + dr[i][1];
if(xx <= n && xx > 0 && yy <= m && yy >0)
t += vis[xx][yy];
}
return t%2;
} int dfs()
{ for(int j = 2; j <= n; j++)
for(int k = 1; k <= m; k++)
{
if(fz(j-1, k)) vis[j][k] = 1;
}
for(int j = 1; j <= m; j++)
{
if(fz(n, j))
return -1;
}
int cnt = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++)
cnt += vis[i][j];
return cnt; } int main()
{
ios::sync_with_stdio(false);
int T;
cin >> T;
int ans = 0;
while(ans++ < T)
{
mi = INF;
n = 5;
m = 6;
for(int i = 1; i <=n; i++)
for(int j = 1; j <=m ; j++)
cin >> mp[i][j];
int flag = 0;
for(int i = 0; i < 1<<m ; i++)
{
memset(vis, 0, sizeof(vis));
for(int j = 1; j <= m; j++)
vis[1][m-j+1] = i>>(j-1) & 1; int cnt = dfs();
if(cnt < mi && cnt >= 0)
{
flag =1;
mi = cnt;
memcpy(cal, vis, sizeof(vis));
} }
cout << "PUZZLE #" << ans << endl;
if(flag)
{
for(int i = 1; i <=n; i++)
{
for(int j = 1; j <= m; j++)
{
if(j != 1) cout << " ";
cout << cal[i][j];
} cout << endl;
}
} else cout << "IMPOSSIBLE" << endl;
} return 0;
}
*/
// 高斯消元法 : #include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int n=;
int tt,a[n+][n+];
void gauss()//保证有解
{
int r;
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)if(a[j][i]){r=j;break;}
if(r!=i)for(int j=;j<=n+;j++) swap(a[i][j],a[r][j]);
for(int j=i+;j<=n;j++)if(a[j][i])
for(int k=i;k<=n+;k++)
a[j][k]^=a[i][k];
}
for(int i=n;i>=;i--)
for(int j=i+;j<=n;j++)
if(a[i][j])a[i][n+]^=a[j][n+];
}
int main()
{
scanf("%d",&tt);
int t=;
while(tt--)
{
t++;
memset(a,,sizeof(a));
for(int i=;i<=n;i++)
{
scanf("%d",&a[i][n+]);
a[i][i]=;
if(i%!=)a[i][i-]=;
if(i%!=)a[i][i+]=;
if(i>)a[i][i-]=;
if(i<)a[i][i+]=;
}
gauss();
printf("PUZZLE #%d\n",t);
for(int i=;i<=n;i++)
{
if(!(i%))printf("%d\n",a[i][n+]);
else printf("%d ",a[i][n+]);
}
}
return ;
}
EXTENDED LIGHTS OUT (高斯消元)的更多相关文章
- poj1222 EXTENDED LIGHTS OUT 高斯消元||枚举
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8481 Accepted: 5479 Description In an ...
- POJ 1222 EXTENDED LIGHTS OUT (高斯消元)
题目链接 题意:5*6矩阵中有30个灯,操作一个灯,周围的上下左右四个灯会发生相应变化 即由灭变亮,由亮变灭,如何操作使灯全灭? 题解:这个问题是很经典的高斯消元问题.同一个按钮最多只能被按一次,因为 ...
- POJ1222 EXTENDED LIGHTS OUT 高斯消元 XOR方程组
http://poj.org/problem?id=1222 在学校oj用搜索写了一次,这次写高斯消元,haoi现场裸xor方程消元没写出来,真实zz. #include<iostream> ...
- [poj1222]EXTENDED LIGHTS OUT(高斯消元)
题意:每个灯开启会使自身和周围的灯反转,要使全图的灯灭掉,判断灯开的位置. 解题关键:二进制高斯消元模板题. 复杂度:$O({n^3})$ #include<cstdio> #includ ...
- POJ 1222 EXTENDED LIGHTS OUT [高斯消元XOR]
题意: $5*6$网格里有一些灯告诉你一开始开关状态,按一盏灯会改变它及其上下左右的状态,问最后全熄灭需要按那些灯,保证有解 经典问题 一盏灯最多会被按一次,并且有很明显的异或性质 一个灯作为一个方程 ...
- BZOJ 1770: [Usaco2009 Nov]lights 燈( 高斯消元 )
高斯消元解xor方程组...暴搜自由元+最优性剪枝 -------------------------------------------------------------------------- ...
- BZOJ1770:[USACO]lights 燈(高斯消元,DFS)
Description 貝希和她的閨密們在她們的牛棚中玩遊戲.但是天不從人願,突然,牛棚的電源跳閘了,所有的燈都被關閉了.貝希是一個很膽小的女生,在伸手不見拇指的無盡的黑暗中,她感到驚恐,痛苦與絕望. ...
- [luoguP2962] [USACO09NOV]灯Lights(高斯消元 + dfs)
传送门 先进行高斯消元 因为要求最少的开关次数,那么: 对于关键元,我们可以通过带入消元求出, 对于自由元,我们暴力枚举,进行dfs,因为只有开关两种状态,0或1 #include <cmath ...
- BZOJ 1770: [Usaco2009 Nov]lights 燈 [高斯消元XOR 搜索]
题意: 经典灯问题,求最少次数 本题数据不水,必须要暴搜自由元的取值啦 想了好久 然而我看到网上的程序都没有用记录now的做法,那样做遇到自由元应该可能会丢解吧...? 我的做法是把自由元保存下来,枚 ...
随机推荐
- 20165317 学习基础和C语言基础调查
学习基础和C语言基础调查 关于优势技能 说来惭愧,读书多年,爱好不少,但是真的能拿的出手的.能被叫做特长的不多.至今,能在同龄人中处于较领先位置的也只有从四年级开始练起的乒乓球.记得开始练习乒乓球是从 ...
- Java+Selenium如何解决空指针
1.问题描述:浏览器获取当期窗口值获取为空.
- java JDBC (八) 连接池 DBCP
package cn.sasa.demo1; import javax.sql.DataSource; import org.apache.commons.dbcp2.BasicDataSource; ...
- bzoj3733 [Pa2013]Iloczyn 搜索
正解:搜索 解题报告: 先放下传送门QwQ umm其实并不难,,,最近在复建基础姿势点所以都写的是些小水题QAQ 首先考虑如果能构造出来一定是因数凑起来鸭,所以先把因数都拆出来,然后就爆搜 几个常见的 ...
- word2vec参数理解
之前写了对word2vec的一些简单理解,实践过程中需要对其参数有较深的了解: class gensim.models.word2vec.Word2Vec(sentences=None,size=10 ...
- magento 2.3安装测试数据
前面我们一步步composer安装Magento2.3,但是没有数据的话各项设置不是很熟悉,所以最好还是安装一下测试数据.下面我们就跟ytkah一起填充数据.假设magento 2.3安装目录是/ww ...
- 003-pro ant design 前端权限处理-支持URL参数的页面
前天需要增加MD5引用 https://www.bootcdn.cn/blueimp-md5/ 1.修改权限文件(CheckPermissions.js)使用自定义权限 2.配置异常页面 2.1.创建 ...
- vue/cli3 配置vux
安装各插件 试过 安装“必须安装”的部分亦可 1.安装vuex npm install vuex --save-dev 2.在项目里面安装vux[必须安装] npm install vux --sav ...
- python-->(set /dict)交集 差集 并集 补集(功能用来做交差并补的)
# ### 集合 作用:交集 差集 并集 补集(功能用来做交差并补的) '''特征:自动去重 无序''' #定义一个空集合 setvar = set() #set()强制转换成一个空集合的数据类型 p ...
- LSTM输入层、隐含层及输出层参数理解【转载】
转自:https://blog.csdn.net/yyb19951015/article/details/79740869 //这个博客讲的挺不错的. http://www.newlifeclan.c ...