KNN(K-Nearest Neighbor)介绍
KNN(K-Nearest Neighbor)介绍
Wikipedia上的 KNN词条 中有一个比较经典的图如下:
KNN的算法过程是是这样的:
从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。
如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。(参考 酷壳的 K Nearest Neighbor 算法 )
我们可以看到,KNN本质是基于一种数据统计的方法!其实很多机器学习算法也是基于数据统计的。
KNN是一种memory-based learning,也叫instance-based learning,属于lazy learning。即它没有明显的前期训练过程,而是程序开始运行时,把数据集加载到内存后,不需要进行训练,就可以开始分类了。
具体是每次来一个未知的样本点,就在附近找K个最近的点进行投票。
再举一个例子,Locally weighted regression (LWR)也是一种 memory-based 方法,如下图所示的数据集。
用任何一条直线来模拟这个数据集都是不行的,因为这个数据集看起来不像是一条直线。但是每个局部范围内的数据点,可以认为在一条直线上。每次来了一个位置样本x,我们在X轴上以该数据样本为中心,左右各找几个点,把这几个样本点进行线性回归,算出一条局部的直线,然后把位置样本x代入这条直线,就算出了对应的y,完成了一次线性回归。
也就是每次来一个数据点,都要训练一条局部直线,也即训练一次,就用一次。
LWR和KNN是不是很像?都是为位置数据量身定制,在局部进行训练。
K-Means介绍
如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示。(a)刚开始时是原始数据,杂乱无章,没有label,看起来都一样,都是绿色的。(b)假设数据集可以分为两类,令K=2,随机在坐标上选两个点,作为两个类的中心点。(c-f)演示了聚类的两种迭代。先划分,把每个数据样本划分到最近的中心点那一簇;划分完后,更新每个簇的中心,即把该簇的所有数据点的坐标加起来去平均值。这样不断进行”划分—更新—划分—更新”,直到每个簇的中心不在移动为止。(图文来自Andrew ng的机器学习公开课)。
推荐关于K-Means的两篇博文, K-Means 算法 _ 酷壳 , 漫谈 Clustering (1)_ k-means pluskid 。
KNN和K-Means的区别
KNN |
K-Means |
1.KNN是分类算法 2.监督学习 3.喂给它的数据集是带label的数据,已经是完全正确的数据 |
1.K-Means是聚类算法 2.非监督学习 3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 |
没有明显的前期训练过程,属于memory-based learning | 有明显的前期训练过程 |
K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label设为c | K的含义:K是人工固定好的数字,假设数据集合可以分为K个簇,由于是依靠人工定好,需要一点先验知识 |
相似点:都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了NN(Nears Neighbor)算法,一般用KD树来实现NN。 |
KNN(K-Nearest Neighbor)介绍的更多相关文章
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- K nearest neighbor cs229
vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time impo ...
- K-Means和K Nearest Neighbor
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html
- [机器学习系列] k-近邻算法(K–nearest neighbors)
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...
- Nearest neighbor graph | 近邻图
最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿. 实例: R eNetIt v0.1-1 data(ralu.site) # Saturated spatial graph ...
- 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...
- Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...
- Nearest Neighbor Search
## Nearest Neighbor Search ## Input file: standard input Output file: standard output Time limit: 1 ...
随机推荐
- IdentityServer4:IdentityServer4+API+Client实践OAuth2.0客户端模式(1)
一.OAuth2.0 1.OAuth2.0概念 OAuth2.0(Open Authorization)是一个开放授权协议:第三方应用不需要接触到用户的账户信息(如用户名密码),通过用户的授权访问用户 ...
- Selenium基础知识(五)多窗口切换
说到多窗口切换必须想到driver.switch_to.window()方法 driver.switch_to.window() 实现在不同窗口之间切换 driver.current_window_h ...
- java 之多线程
多线程基本概念_程序_线程 1.1程序.进程.线程 程序:Program是一个指令的集合 进程:Process(正在执行中的程序)是一个静态的概念.进程是程序的一次静态执行过程,占用特定的地址空间.每 ...
- LeetCode13.罗马数字转整数
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值 I 1 V 5 X 10 L 50 C 100 D 500 M 1000 例如, 罗马数字 2 写做 II ,即为两个并 ...
- windows假装更新升级
http://fakeupdate.net/ 进入这个网站,选择一款系统界面,按F11进去全屏 比较有趣
- Day9 面向对象高级
一.方法 方法包括:普通方法.静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同. 普通方法:由对象调用:至少一个self参数:执行普通方法时,自动将调用该方法的对象赋值给self: ...
- fzu2204 dp
2015-10-06 19:31:05 n个有标号的球围成一个圈.每个球有两种颜色可以选择黑或白染色.问有多少种方案使得没有出现连续白球7个或连续黑球7个. 每组包含n,表示球的个数.(1 <= ...
- mysql按天,按周,按月,按季度,按年统计数据
/*查询2小时前的数据*/select * from tableName WHERE create_time HOUR) SELECT count(id) FROM rd_track_info WHE ...
- 【Linux学习四】正则表达式
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 一.grep:显示匹配行v:反显示e:使用扩展正则表达式E:不使用正则 ...
- QT 继承QWidget && 继承QDialog
工作项目中,利用到Qt对话框,场景需求: 1. 一部分窗体需要继承自QWidget 2. 一部分窗体需要继承自QDialog 3. 两者均需要去掉标题栏图标,同时能够自由拖动. 如果两者分开继承实现, ...