KNN(K-Nearest Neighbor)介绍
KNN(K-Nearest Neighbor)介绍
Wikipedia上的 KNN词条 中有一个比较经典的图如下:
KNN的算法过程是是这样的:
从上图中我们可以看到,图中的数据集是良好的数据,即都打好了label,一类是蓝色的正方形,一类是红色的三角形,那个绿色的圆形是我们待分类的数据。
如果K=3,那么离绿色点最近的有2个红色三角形和1个蓝色的正方形,这3个点投票,于是绿色的这个待分类点属于红色的三角形。
如果K=5,那么离绿色点最近的有2个红色三角形和3个蓝色的正方形,这5个点投票,于是绿色的这个待分类点属于蓝色的正方形。(参考 酷壳的 K Nearest Neighbor 算法 )
我们可以看到,KNN本质是基于一种数据统计的方法!其实很多机器学习算法也是基于数据统计的。
KNN是一种memory-based learning,也叫instance-based learning,属于lazy learning。即它没有明显的前期训练过程,而是程序开始运行时,把数据集加载到内存后,不需要进行训练,就可以开始分类了。
具体是每次来一个未知的样本点,就在附近找K个最近的点进行投票。
再举一个例子,Locally weighted regression (LWR)也是一种 memory-based 方法,如下图所示的数据集。
用任何一条直线来模拟这个数据集都是不行的,因为这个数据集看起来不像是一条直线。但是每个局部范围内的数据点,可以认为在一条直线上。每次来了一个位置样本x,我们在X轴上以该数据样本为中心,左右各找几个点,把这几个样本点进行线性回归,算出一条局部的直线,然后把位置样本x代入这条直线,就算出了对应的y,完成了一次线性回归。
也就是每次来一个数据点,都要训练一条局部直线,也即训练一次,就用一次。
LWR和KNN是不是很像?都是为位置数据量身定制,在局部进行训练。
K-Means介绍
如图所示,数据样本用圆点表示,每个簇的中心点用叉叉表示。(a)刚开始时是原始数据,杂乱无章,没有label,看起来都一样,都是绿色的。(b)假设数据集可以分为两类,令K=2,随机在坐标上选两个点,作为两个类的中心点。(c-f)演示了聚类的两种迭代。先划分,把每个数据样本划分到最近的中心点那一簇;划分完后,更新每个簇的中心,即把该簇的所有数据点的坐标加起来去平均值。这样不断进行”划分—更新—划分—更新”,直到每个簇的中心不在移动为止。(图文来自Andrew ng的机器学习公开课)。
推荐关于K-Means的两篇博文, K-Means 算法 _ 酷壳 , 漫谈 Clustering (1)_ k-means pluskid 。
KNN和K-Means的区别
KNN |
K-Means |
1.KNN是分类算法 2.监督学习 3.喂给它的数据集是带label的数据,已经是完全正确的数据 |
1.K-Means是聚类算法 2.非监督学习 3.喂给它的数据集是无label的数据,是杂乱无章的,经过聚类后才变得有点顺序,先无序,后有序 |
没有明显的前期训练过程,属于memory-based learning | 有明显的前期训练过程 |
K的含义:来了一个样本x,要给它分类,即求出它的y,就从数据集中,在x附近找离它最近的K个数据点,这K个数据点,类别c占的个数最多,就把x的label设为c | K的含义:K是人工固定好的数字,假设数据集合可以分为K个簇,由于是依靠人工定好,需要一点先验知识 |
相似点:都包含这样的过程,给定一个点,在数据集中找离它最近的点。即二者都用到了NN(Nears Neighbor)算法,一般用KD树来实现NN。 |
KNN(K-Nearest Neighbor)介绍的更多相关文章
- K NEAREST NEIGHBOR 算法(knn)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...
- K Nearest Neighbor 算法
文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...
- K nearest neighbor cs229
vectorized code 带来的好处. import numpy as np from sklearn.datasets import fetch_mldata import time impo ...
- K-Means和K Nearest Neighbor
来自酷壳: http://coolshell.cn/articles/7779.html http://coolshell.cn/articles/8052.html
- [机器学习系列] k-近邻算法(K–nearest neighbors)
C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...
- Nearest neighbor graph | 近邻图
最近在开发一套自己的单细胞分析方法,所以copy paste事业有所停顿. 实例: R eNetIt v0.1-1 data(ralu.site) # Saturated spatial graph ...
- 【cs231n】图像分类-Nearest Neighbor Classifier(最近邻分类器)【python3实现】
[学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8735908.html 图像分类: 一张图像的表示:长度.宽度.通道(3个颜色通道 ...
- Visualizing MNIST with t-SNE, MDS, Sammon’s Mapping and Nearest neighbor graph
MNIST 可视化 Visualizing MNIST: An Exploration of Dimensionality Reduction At some fundamental level, n ...
- Nearest Neighbor Search
## Nearest Neighbor Search ## Input file: standard input Output file: standard output Time limit: 1 ...
随机推荐
- docker同步时区时间
在Docker容器创建好之后,可能会发现容器时间跟宿主机时间不一致,这就需要同步它们的时间,让容器时间跟宿主机时间保持一致.如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 ...
- cocos2dx - JS - 碰撞检测
碰撞检测是游戏的一个重要组成部分,我们这里使用一种最简单的方法,就是获取精灵的矩形碰撞框.当然圆形的碰撞检测也比较简单,其他形状就复杂多了.首先是如何获取矩形碰撞框:var hBox=this.her ...
- Hbase java api
export JAVA_HOME=/home/hadoop/app/jdk1.8.0_144export HADOOP_HOME=/home/hadoop/app/hadoop-2.4.1export ...
- hessian 在spring中的使用 (bean 如 Dao无法注入的问题)
hessian的主要结构分客户端与服务端,中间基于http传输.客户端主要做的事情是把对远程接口调用序列化为流,并传输到服务端:服务端主要做的事情是把传输过来的流反序列化为对服务的请求,调用相应服务后 ...
- 软工网络15团队作业4——Alpha阶段敏捷冲刺8.0
软工网络15团队作业4--Alpha阶段敏捷冲刺8.0 1.每天举行站立式会议,提供当天站立式会议照片一张. 2.项目每个成员的昨天进展.存在问题.今天安排. 2.1 任务完成安排: 成员 昨日已完成 ...
- Beta阶段冲刺前计划与安排
凡事预则立,在Beta开始前,以小组为单位,在敏捷冲刺前发布一篇博客,描述: 1. 介绍小组新加入的成员,Ta担任的角色. 新加入的成员是丁蓉同学,在本团队中担任前端设计. 原因:在之前的团队中,她就 ...
- Git-分支的建立与合并
举一个实际工作中可能会遇到的分支建立与合并的例子: 开发某个网站. 为实现某个新的需求,创建一个分支. 在这个分支上开展工作. 假设此时,你突然接到一个电话说有个很严重的问题需要紧急修补,那么可以按照 ...
- 《大话设计模式》c++实现 装饰者模式
一.UML图 介绍 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其结构.这种类型的设计模式属于结构型模式,它是作为现有的类的一个包装. 这种模式创 ...
- uvalive 3887 Slim Span
题意: 一棵生成树的苗条度被定义为最长边与最小边的差. 给出一个图,求其中生成树的最小苗条度. 思路: 最开始想用二分,始终想不到二分终止的条件,所以尝试暴力枚举最小边的长度,然后就AC了. 粗略估计 ...
- Java基础语法(一 )
一.关键字 关键字概述 被Java语言赋予特定含义的单词 关键字特点 组成关键字的字母全部小写 关键字注意事项 goto和const作为保留字存在,目前并不使用 关键字单词 用于定义数据类型的关键字 ...