因为要用到模,所以左起点设置为0比较好

#include<iostream>
#include<cstdio>
#include<cstring>
#define INF 0x3f3f3f3f
using namespace std;
char c[];
int val[],dp_max[][],dp_min[][];
int cal(char x,int a,int b){if(x=='t')return a+b;return a*b;} int main(){
int n;
while(scanf("%d",&n)==){
for(int i=;i<n;i++) cin>>c[i]>>val[i];
for(int i=;i<n;i++) dp_min[i][i]=dp_max[i][i]=val[i];//长度为1的情况
for(int len=;len<n;len++)
for(int l=;l<n;l++){//枚举左端点
int MAX=-INF,MIN=INF;
int r=(l+len)%n;
for(int k=;k<len;k++){
int p1=(l+k)%n,p2=(l+k+)%n;
MAX=max(MAX,cal(c[p2],dp_max[l][p1],dp_max[p2][r]));
MAX=max(MAX,cal(c[p2],dp_min[l][p1],dp_min[p2][r]));
MIN=min(MIN,cal(c[p2],dp_max[l][p1],dp_max[p2][r]));
MIN=min(MIN,cal(c[p2],dp_min[l][p1],dp_min[p2][r]));
}
dp_max[l][r]=MAX;
dp_min[l][r]=MIN;
}
int ans=-INF;
for(int l=;l<n;l++){
int r=(l+n-)%n;
ans=max(ans,dp_max[l][r]);
}
printf("%d\n",ans);
for(int l=;l<n;l++){
int r=(l+n-)%n;
if(dp_max[l][r]==ans) printf("%d ",l+);
}
puts("");
}
return ;
}

poj1179 环形+区间dp的更多相关文章

  1. poj1179多边形——区间DP

    题目:http://poj.org/problem?id=1179 区间DP,值得注意的是有负值,而且有乘法,因此可能会影响最大值: 注意memset中写-1仅仅是-1,-2才是一个很小的负数: 最后 ...

  2. codevs1154能量项链 环形区间DP 细节

    中文题..题意略 我们知道每次枚举最后合并哪两个.. 于是枚举中间节点k 我犯的错误是将转移方程写成了,dp[l][r]=max(dp[l][r],dp[l][k]+dp[k+1][r]+a[l]*a ...

  3. P1880 [NOI1995]石子合并-(环形区间dp)

    https://www.luogu.org/problemnew/show/P1880 解题过程:本次的题目把石子围成一个环,与排成一列的版本有些不一样,可以在后面数组后面再接上n个元素,表示连续n个 ...

  4. dp乱写3:环形区间dp(数字游戏)

    状态: fmax[i,j]//表示前i个数分成j个部分的最大值 fmin[i,j]//表示前i个数分成j个部分的最小值 边界:fmax[i,1]:=(sum[i] mod 10+10) mod 10( ...

  5. POJ1179 Polygon 区间DP

    题目大意: 多边形游戏,有N个顶点的多边形,3 <= N <= 50 ,多边形有N条边,每个顶点中有一个数字(可正可负),每条边上或者是“+”号,或者是“*”号.边从1到N编号,首先选择一 ...

  6. 区间dp笔记√

    区间DP是一类在区间上进行dp的最优问题,一般是根据问题设出一个表示状态的dp,可以是二维的也可以是三维的,一般情况下为二维. 然后将问题划分成两个子问题,也就是一段区间分成左右两个区间,然后将左右两 ...

  7. 区间DP入门题目合集

      区间DP主要思想是先在小区间取得最优解,然后小区间合并时更新大区间的最优解.       基本代码: //mst(dp,0) 初始化DP数组 ;i<=n;i++) { dp[i][i]=初始 ...

  8. 区间DP中的环形DP

    vijos1312 链接:www.vijos.org/p/1312 题目分析:经典的环形DP(区间DP) 环形DP,首先解环过程,把数组复制一遍,n个数变成2n个数,从而实现解环 dp[i][j]表示 ...

  9. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

随机推荐

  1. POJ1185 状压dp(二进制//三进制)解法

    很显然这是一道状压dp的题目 由于每个最优子结构和前两行有关,一个显而易见的想法是用三维dp[i][j][k]用来记录在第i行下为j状态,i - 1行为k状态时的最大值,然而dp[100][1 < ...

  2. go 数组与切片

    数组概念 1.数组:是同一种数据类型的固定长度的序列. 2.数组定义:var a [len]int,比如:var a[5]int,一旦定义,长度不能变 3.长度是数组类型的一部分,因此,var a[5 ...

  3. Jenkins自动发布代码实战篇

    Jenkins自动发布代码实战篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.  一.Jenkins服务器配置秘钥对并上传到Gitlab中 1>.在Jenkins后端生成秘钥 ...

  4. python---redis缓存页面实现

    import tornado.web from controllers.BaseController import BaseRequestHandler import redis pool = red ...

  5. windows单机环境下配置tomcat集群

    场景:我们在平常联系中,需要涉及到tomcat中,但是电脑不够怎么办,肯定是在自己的电脑上模拟集群,就是装多个tomcat,这时候需要稍微配置下.如果是多个服务器,那不用配置,直接怼!!! 这里介绍的 ...

  6. jdk8中奖Date转换为String格式的方法

    public static String getLocalDateStr(Date date,String formatter) { DateTimeFormatter dateTimeFormatt ...

  7. springboot系列之-logging

    配置文件以application.yml为例说明: Spring Boot默认的日志组件为Logback. 一. 日志配置参数: logging: file: # 日志文件,绝对路径或相对路径 pat ...

  8. 11. SpringBoot 之CRUD实例

    SpringBoot静态页路径,可直接通过URL访问的: /META-INF/resources /resources /static /public 而    5. /template 只和模板引擎 ...

  9. quartz开源插件(定时心跳后台执行)

    定时心跳,一般应用场景都是服务或者exe控制台程序来搜集数据推送等,供其他页面来调用或者向服务推送等,但又不限于此. 1.先来介绍下quartz吧. 2.quartz用法: 3.我写个小例子来巩固下q ...

  10. jquery 学习(五) - CSS 操作

    HTML + CSS 样式 /*CSS样式*/<style> body{ margin: 0; } div{ width: 100%; height: 2000px; background ...