题目描述

组合数 Cnm​ 表示的是从 n 个物品中选出 m 个物品的方案数。举个例子,从 (1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3) 这三种选择方法。根据组合数的定义,我们可以给出计算组合数 Cnm​ 的一般公式:

Cnm​=m!/(n−m)!n!​

其中n!=1×2×⋯×n;特别地,定义 0!=1。

小葱想知道如果给定 n,m 和 k,对于所有的 0≤i≤n,0≤j≤min(i,m) 有多少对 (i,j) 满足 Cij​ 是 k 的倍数。

输入输出格式

输入格式:

第一行有两个整数 t,k,其中 t代表该测试点总共有多少组测试数据,k 的意义见问题描述。

接下来 t行每行两个整数 n,m,其中 n,m 的意义见问题描述。

输出格式:

共 t 行,每行一个整数代表所有的0≤i≤n,0≤j≤min(i,m) 中有多少对 (i,j) 满足 Cij​ 是 k 的倍数。

输入输出样例

输入样例#1: 复制

1 2
3 3
输出样例#1: 复制

1
输入样例#2: 复制

2 5
4 5
6 7
输出样例#2: 复制

0
7

说明

【样例1说明】

在所有可能的情况中,只有C_2^1 = 2C21​=2是2的倍数。

【子任务】

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int i,j,n,m,t,k,ans[][],c[][];
void build()
{
c[][] = ;
c[][] = ;
c[][] = ;
for(i = ;i <= ;i++)
{
c[i][] = ;
for(j = ;j <= i;j++)
{
c[i][j] = (c[i - ][j - ] + c[i - ][j]) % k; //第j个选他的可能性和不选他的可能性加在一起
ans[i][j] = ans[i - ][j] + ans[i][j - ] - ans[i - ][j - ];//求前缀和
if(c[i][j] == ) //代表是k的倍数
ans[i][j]++;
ans[i][i + ] = ans[i][i]; //继承
}
}
}
int main()
{
scanf("%d %d",&t,&k);
build();
for(i = ;i <= t;i++)
{
scanf("%d %d",&n,&m);
if(n < m)
printf("%d",ans[n][n]);//在这种情况下最多也只能取到n
else
printf("%d",ans[n][m]);
if(i != t)
printf("\n");
}
return ;
}

*******万恶的组合数,竟然还有前缀和这个操作。

noip2016组合数问题的更多相关文章

  1. Noip2016组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  2. NOIP2016 组合数问题

    https://www.luogu.org/problem/show?pid=2822 题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以 ...

  3. [Noip2016]组合数(数论)

    题目描述 组合数表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的定 义,我们可以给出计算 ...

  4. 2559. [NOIP2016]组合数问题

    [题目描述] [输入格式] 从文件中读入数据. 第一行有两个整数t, k,其中t代表该测试点总共有多少组测试数据,k的意义见[问题描述]. 接下来t行每行两个整数n, m,其中n, m的意义见[问题描 ...

  5. Luogu 2822[NOIP2016] 组合数问题 - 数论

    题解 乱搞就能过了. 首先我们考虑如何快速判断C(i, j ) | k 是否成立. 由于$k$非常小, 所以可以对$k$分解质因数, 接着预处理出前N个数的阶乘的因数中 $p_i$ 的个数, 然后就可 ...

  6. [noip2016]组合数问题<dp+杨辉三角>

    题目链接:https://vijos.org/p/2006 当时在考场上只想到了暴力的做法,现在自己看了以后还是没思路,最后看大佬说的杨辉三角才懂这题... 我自己总结了一下,我不能反应出杨辉三角的递 ...

  7. NOIP 2016 组合数问题

    洛谷 P2822 组合数问题 洛谷传送门 JDOJ 3139: [NOIP2016]组合数问题 D2 T1 JDOJ传送门 Description 组合数Cnm表示的是从n个物品中选出m个物品的方案数 ...

  8. noip 2016提高组D2T1 problem

    我们可以先预处理一下组合数模K的值,然后我们可以发现对于答案ji[n][m],可以发现递推式ji[i][j]=ji[i-1][j]+ji[i][j-1]-ji[i-1][j-1]并对于Cij是否%k等 ...

  9. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

随机推荐

  1. SpringBoot war包部署到Tomcat服务器

    (1)pom.xml文件修改<packaging>war</packaging>,默认是jar包,<build>节点中增加<finalName>spri ...

  2. FI CO 常用表

    FI CO 常用表     最近写FICO的报表写得有点多,许多Table记不住,用F1查找又有点费事,不如把表单写下来,以后用到,直接在这上面找得了. 1,账目表主数据  SKA1  SKB1  S ...

  3. HDU 5245 Joyful(期望)

    http://acm.hdu.edu.cn/showproblem.php?pid=5245 题意: 给出一个n*m的矩阵格子,现在有k次操作,每次操作随机选择两个格子作为矩形的对角,然后将这范围内的 ...

  4. 每天一个小程序—第0001题(uuid模块)

    第 0001 题:  做为 Apple Store App 独立开发者,你要搞限时促销,为你的应用生成激活码(或者优惠券),使用 Python 如何生成 200 个激活码(或者优惠券)? 一开始以为是 ...

  5. HTML+CSS+JS 传智 详细笔记

    HTML(1)- -毕向东老师对Html的简介 CSS- -毕老师对CSS的简介 Javascript- -毕老师对JS的简介 html&css等等练习表(W3Cscholl) js练习表回顾 ...

  6. 理解 Redis(4) - 关于 string 的更多命令(SETEX, SETNX, INCR, DECR, MSET...)

    上一节介绍了关于字符串值的一些基本命令, 这一节将介绍一些进阶命令: 清理终端: 127.0.0.1:6379> clear 设置一个键值对, 同时设置过期时间为10秒: 127.0.0.1:6 ...

  7. Python安装常见问题:ModuleNotFoundError: No module named '_ctypes' 解决办法

    一般位于3.7以上版本编译安装时出错 缺少依赖包libffi-devel 在安装3.7以上版本时,需要一个新的libffi-devel包做依赖 解决方法: yum install libffi-dev ...

  8. [HTTP]_[C/C++]_[解析URL的转义字符百分比字符串]

    场景: 1.有时候获取一个超链接时,或者一个图片src时,里面的地址带有%XX,这样如果当成文件路径处理会不识别.所以要把转义字符解码. 2.它其实就是ASCII码的十六进制表示. 以下是stacko ...

  9. Python编码简要说明

    ●python2默认编码:ASCII编码 达到正确显示,程序需要编码转换: UTF-8 -- >decode解码 --> Unicode Unicode -- > encode编码 ...

  10. 03-python-装饰器

    装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象.它经常用于有切面需求的场景,比如:插入日志.性能测试.事务处理.缓存.权 ...