sdoi<序列计数>
链接:https://www.luogu.org/problemnew/show/P3702
题解:
碰到计数题都要想想容斥
就跟碰到最大值最小要想想二分一样
考虑没有一个数是质数
那就确定了每一个数的取值范围
那么dp方程很显然
然后构造矩阵来优化转移
可以发现每个决策时一样的 所以矩阵可以一列一列的复制
#include <bits/stdc++.h>
#pragma comment(linker,"/STACK:102400000,102400000")
#pragma G++ optimize (“O2”)
using namespace std;
#define ll long long
const ll maxn= 2e7+;
#define mo 20170408
ll k,n,m;
bool f[maxn+];
struct re{
ll jz1[][],jz2[][];
}a;
re tmp,c;
re XX(re x,re y)
{
memset(tmp.jz1,,sizeof(tmp.jz1));
memset(tmp.jz2,,sizeof(tmp.jz2));
for (ll i=;i<k;i++)
for (ll j=;j<k;j++)
for (ll p=;p<k;p++)
{
tmp.jz1[i][p]=(tmp.jz1[i][p]+x.jz1[i][j]*y.jz1[j][p])%mo;
tmp.jz2[i][p]=(tmp.jz2[i][p]+x.jz2[i][j]*y.jz2[j][p])%mo;
}
return(tmp);
}
re fastpow(ll x)
{
cout<<x<<endl;
if (x==) return(a);
c=fastpow(x/);
c=XX(c,c);
if (x%) c=XX(c,a);
return c;
}
int main()
{
freopen("noip.in","r",stdin);
freopen("noip.out","w",stdout);
cin>>n>>m>>k;
memset(f,,sizeof(f));
f[]=f[]=;
for (ll i=;i<=maxn;i++)
if (f[i])
{
ll j=;
while (j*i<=maxn)
{
f[j*i]=; j++;
}
}
for (ll i=;i<=m;i++)
if (!f[i])
{
a.jz1[((-i%k)+k)%k][]++;
}
for (ll i=;i<k;i++)
{
for (ll j=;j<k;j++)
a.jz1[j][i]=a.jz1[j-][i-];
a.jz1[][i]=a.jz1[k-][i-];
}
for (ll i=;i<=m;i++)
a.jz2[((-i%k)+k)%k][]++;
for (ll i=;i<k;i++)
{
for (ll j=;j<k;j++)
a.jz2[j][i]=a.jz2[j-][i-];
a.jz2[][i]=a.jz2[k-][i-];
}
re d=fastpow(n);
cout<<(d.jz2[][]-d.jz1[][]+mo)%mo;
return ;
}
sdoi<序列计数>的更多相关文章
- BZOJ4818 序列计数
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MB Description Alice想要得到一个长度为n的序列,序列中的数都是 ...
- [Sdoi2017]序列计数 [矩阵快速幂]
[Sdoi2017]序列计数 题意:长为\(n \le 10^9\)由不超过\(m \le 2 \cdot 10^7\)的正整数构成的和为\(t\le 100\)的倍数且至少有一个质数的序列个数 总- ...
- BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法
BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ...
- HDU 6348 序列计数 (树状数组 + DP)
序列计数 Time Limit: 4500/4000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Subm ...
- luogu3702-[SDOI2017]序列计数
Description Alice想要得到一个长度为nn的序列,序列中的数都是不超过mm的正整数,而且这nn个数的和是pp的倍数. Alice还希望,这nn个数中,至少有一个数是质数. Alice想知 ...
- 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)
4818: [Sdoi2017]序列计数 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 560 Solved: 359 Description Al ...
- P3702 [SDOI2017]序列计数
P3702 [SDOI2017]序列计数 链接 分析: 首先可以容斥掉,用总的减去一个质数也没有的. 然后可以dp了,f[i][j]表示到第i个数,和在模p下是j的方案数,矩阵快速幂即可. 另一种方法 ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
- BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*
BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...
随机推荐
- oozie JAVA Client 编程提交作业
1,eclipse环境搭建 在eclipse中新建一个JAVA工程,导入必要的依赖包,目前用到的有: 其次编写JAVA 程序提交Oozie作业,这里可参考:oozie官方参考文档 在运行提交程序前,首 ...
- Linux - openssl 加密
openssl rand 15 -base64 # 口令生成 openssl sha1 filename # 哈希算法校验文件 openssl md5 filename # MD5校验文件 opens ...
- 属性动画QPropertyAnimation
属性动画QPropertyAnimation 改变大小.颜色或位置是动画中的常见操作,而QPropertyAnimation类可以修改控件的属性值 大小改变动画: import sys from Py ...
- springboot使用elasticsearch报No property index found for type错误
一.前提:项目之前使用springboot+spring-data-mongodb.现在需要加入elasticsearch做搜索引擎,这样mongo和elasticsearch共存了. 二.报错信息: ...
- luogu P2051 [AHOI2009]中国象棋
统计方案,果断 dp 注意到合法方案即为每一行,每一列的棋子数不超过2 设\(f_{i,j,k}\)表示放到第\(i\)行,有\(j\)列可以放2个,有\(k\)列可以放1个的方案 然后就随便讨论一下 ...
- 个人经验~mysql故障处理思路
一 简介:个人经验总结 二 思路: 从整体上再进行梳理 三 linux角度 1 硬件是否有问题 常见主板 raid卡 和raid磁盘组 2 综合指标 负载 uptime : 1min 5min ...
- Django开发笔记四
Django开发笔记一 Django开发笔记二 Django开发笔记三 Django开发笔记四 Django开发笔记五 Django开发笔记六 1.邮箱激活 users app下,models.py: ...
- Shell高级编程学习笔记(基础篇)
目录 1.shell脚本的执行方法 2.shell的变量类型 3.shell特殊变量 4.变量子串的常用操作 5.批量修改文件名实践 6.变量替换 7.在shell中计算字符串长度的方法 ...
- 推荐系统之协同过滤的原理及C++实现
1.引言 假如你经营着一家网店,里面卖各种商品(Items),有很多用户在你的店里面买过东西,并对买过的Items进行了评分,我们称之为历史信息,现在为了提高销售量,必须主动向用户推销产品,所以关键是 ...
- 【转】Linux中包管理与定时任务
[转]Linux中包管理与定时任务 第1章 软件查询 1.1 查询软件是否安装 rpm -qa |grep cron 查询是否安装了这个软件. [root@znix ~]# rpm -qa |grep ...