什么,tarjan?那是什么?

码量太大,我选择放弃

为什么不用dfs写2-sat呢?他会伤心的说

这题2-sat的过程大佬们已经讲得非常清楚了,我就略微提一下,主要讲dfs的原理

2_sat原理

我们知道,如果要求 \(a\) 或 \(b\) , 那么如果 \(a\) 不成立,我们可以保证 \(b\) 成立.

换成式子: \(a||b\) = \(!a&&b\) || \(a&&!b\)

于是,我们只需要将!a和b连边,!b和a连边就能确定必然要走的路线

dfs原理

dfs的原理是对于每个点,我们将所有能拿的边都拿了,然后判断是否满足某一个点 \(a\) 必然要使得另外一点要同时满足 \(b\) 和 \(!b\) .如果存在这样的一个点,那么这个图必然不成立

具体实现

首先是连边:

for (int i=0;i<m;i++){
string s1,s2; cin >> s1 >> s2;
int b = (s1[0]=='m') ? 1 : 0, d = (s2[0]=='m') ? 1 : 0;
int a = get_num(s1),c = get_num(s2);//get_num是将这个string后面的数字转化为int
adj[a+((b+1)%2)*n].push_back(c+n*d);
adj[c+((d+1)%2)*n].push_back(a+b*n);
}

然后正常dfs

bool dfs(int posi){
memset(vis,0,sizeof(vis));
queue<int> q;
q.push(posi);
vis[posi] = true;
while (!q.empty()){
int qf = q.front();q.pop();
for (int v : adj[qf]){
if (!vis[v]){
vis[v] = true;//没去过下标
q.push(v);
}
}
}
for (int i=1;i<=n;i++) if (vis[i] && vis[i+n]) return false;//这里相当于b&!b,因为i+n代表的是!i
return true;
}

然后呢?

然后就完了啊

其实就对每个点判断是否成立就好了

完整代码:

#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <cstring>
#include <math.h>
using namespace std;
#define pp pair<int,int>
int n,m,pos[100005];
vector<int> adj[200005];
bool vis[200005];
bool dfs(int posi){
memset(vis,0,sizeof(vis));
queue<int> q;
q.push(posi);
vis[posi] = true;
while (!q.empty()){
int qf = q.front();q.pop();
for (int v : adj[qf]){
if (!vis[v]){
vis[v] = true;
q.push(v);
}
}
}
for (int i=1;i<=n;i++) if (vis[i] && vis[i+n]) return false;
return true;
}
int get_num(string s){
int tmp = 0;
for (int i=s.length()-1;i>=1;i--){
tmp+=(int)(s[i]-48)*pow(10,(int)s.length()-i-1);
}//从右往左拿数
return tmp;
}
int main(){
int T; cin >> T;
while(T--){ cin >> n >> m;
for (int i=1;i<=n*2;i++) adj[i].clear();
for (int i=0;i<m;i++){
string s1,s2; cin >> s1 >> s2;
int b = (s1[0]=='m') ? 1 : 0, d = (s2[0]=='m') ? 1 : 0;//满汉的情况下b是1,否则是2
int a = get_num(s1),c = get_num(s2);
adj[a+((b+1)%2)*n].push_back(c+n*d);//a+((b+1)%2)*n表示!a
adj[c+((d+1)%2)*n].push_back(a+b*n);
}
for (int i=1;i<=n;i++) { if(!dfs(i) && !dfs(i+n)){ cout << "BAD" << endl;goto abcd;//有一个跑不了就输出BAD然后走人} }
cout << "GOOD" << endl;//到这还没走人就是可以输出
abcd:;
} }

好题(双倍经验?):P3007

建议刷完这题去写,难度基本上一样,加几行多一题紫题不好么

题解 P4171 【[JSOI2010]满汉全席】的更多相关文章

  1. 洛谷 P4171 [JSOI2010]满汉全席 解题报告

    P4171 [JSOI2010]满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高 ...

  2. 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]

    题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...

  3. [洛谷P4171][JSOI2010]满汉全席

    题目大意:有$n$个点,每个点可以选或不选,有$m$组约束,形如$a,u,b,v$,表示$u=a,v=b$中至少要满足一个条件,问是否存在一组解,多组询问 题解:$2-SAT$,感觉是板子题呀,最后判 ...

  4. P4171 [JSOI2010]满汉全席

    简要的学了一下2-sat,然而不会输出方案. 就是个sb模板题啦 // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il ...

  5. 【题解】JSOI2010满汉全席

    ~bzoj1823 第一次接触2-SAT——SAT,即适定性(Satisfiability)的缩写.像名称所说,即满足需求的可能性问题,而k-SAT即每个人有k种需求,已经证明k>2时是一个NP ...

  6. P4171 [JSOI2010]满汉全席(2-SAT)

    传送门 2-SAT裸题 把每一道菜拆成两个点分别表示用汉式或满式 连边可以参考板子->这里 然后最尴尬的是我没发现$n<=100$然后化成整数的时候只考虑了$s[1]$结果炸掉了2333 ...

  7. Luogu P4171 [JSOI2010]满汉全席 2-sat

    终于搞懂了\(2-sat\).实际上是个挺简单的东西,像网络流一样关键在于建模. 问题:\(n\)个数\(A\),可以选择\(0\)和\(1\),现在给你\(m\)组条件\(A\),\(B\),对每个 ...

  8. LUOGU P4171 [JSOI2010]满汉全席

    传送门 解题思路 2-SAT 裸题. 代码 #include<iostream> #include<cstdio> #include<cstring> #inclu ...

  9. 【BZOJ1823】[JSOI2010]满汉全席(2-sat)

    [BZOJ1823][JSOI2010]满汉全席(2-sat) 题面 BZOJ 洛谷 题解 很明显的\(2-sat\)模板题,还不需要输出方案. 对于任意两组限制之间,检查有无同一种石材要用两种不同的 ...

  10. 【BZOJ1823】[JSOI2010]满汉全席 2-SAT

    [BZOJ1823][JSOI2010]满汉全席 Description 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只 ...

随机推荐

  1. vim 好用的插件

    1  切换文件   使用buffer   这里可以安装一个  minibufExplorer https://github.com/huanglongchao/minibufexpl.vim 2 在项 ...

  2. vue的computed和method的区别

    (1)computed是响应式的,methods并非响应式. (2)computed是带缓存的 (3)computed中的成员可以只定义一个函数作为只读属性,也可以定义get/set变成可读写属性,这 ...

  3. Redis的安装并配置快捷启动

    Redis 安装 1.下载 wget http://download.redis.io/releases/redis-5.0.5.tar.gz 2.解压 tar -zxvf redis-5.0.5.t ...

  4. python---生成式

    1.[(x,y) for x in [1,2,3] for y in [4,2,3] if x == y] (x,y):输出表达式,产生最终列表的元素 for x in [1,2,3] for y i ...

  5. ios 进阶技术点

    1.Runtime的消息转发机制 消息转发机制基本上分为三个步骤: 1. 动态方法解析 2. 备用接收者 3. 完整转发 2.Runloop的工作原理 runloop.autorelease pool ...

  6. C++ STD Gems06

    generate.generate_n.sample.iota #include <iostream> #include <vector> #include <strin ...

  7. java内存机制 垃圾回收

    gc机制一 1.JVM的gc概述 gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存.java语言并不要求jvm有gc,也没有规定gc如何工作.不过常用的jvm都有gc,而且大多数gc ...

  8. jquery判断当前浏览器是否是IE

    if (window.ActiveXObject || "ActiveXObject" in window){ layer.msg("This page does not ...

  9. Jenkins-在CentOS7 上安装配置

    Jenkins-在CentOS7 上安装配置 1.安装JDK yum install -y java 2.安装jenkins 方法1:添加Jenkins库到yum库,Jenkins将从这里下载安装. ...

  10. Invalid bound statement (not found): com.xxxx.dao.other.LoginDao.getUser"

    原来是能正常运行的,后想把登录相关的调整一下目录,对应登录的文件都调整到了other下边,启动服务,请求时报错: Invalid bound statement (not found): com.xx ...