Flink运行时组件

  • JobManager 作业管理器
  • TaskManager 任务管理器
  • ResourceManager 资源管理器
  • Dispatcher 分发器

任务提交流程

任务调度原理

Job Managers, Task Managers, Clients

The Flink runtime consists of two types of processes:

The JobManagers (also called masters) coordinate the distributed execution. They schedule tasks, coordinate checkpoints, coordinate recovery on failures, etc.
There is always at least one Job Manager. A high-availability setup will have multiple JobManagers, one of which one is always the leader, and the others are standby.
The TaskManagers (also called workers) execute the tasks (or more specifically, the subtasks) of a dataflow, and buffer and exchange the data streams.
There must always be at least one TaskManager.

The JobManagers and TaskManagers can be started in various ways: directly on the machines as a standalone cluster, in containers, or managed by resource frameworks like YARN or Mesos. TaskManagers connect to JobManagers, announcing themselves as available, and are assigned work.

The client is not part of the runtime and program execution, but is used to prepare and send a dataflow to the JobManager. After that, the client can disconnect, or stay connected to receive progress reports. The client runs either as part of the Java/Scala program that triggers the execution, or in the command line process ./bin/flink run ....

Task Slots and Resources

Each worker (TaskManager) is a JVM process, and may execute one or more subtasks in separate threads. To control how many tasks a worker accepts, a worker has so called task slots (at least one).
每个TaskManager都是一个JVM进程,可以在独立的线程中执行一个或多个子任务。TaskManager有Task Slots来控制可以接收多少个任务(一个TaskManager至少有一个Task Slot)。

Each task slot represents a fixed subset of resources of the TaskManager. A TaskManager with three slots, for example, will dedicate 1/3 of its managed memory to each slot. Slotting the resources means that a subtask will not compete with subtasks from other jobs for managed memory, but instead has a certain amount of reserved managed memory. Note that no CPU isolation happens here; currently slots only separate the managed memory of tasks.

By adjusting the number of task slots, users can define how subtasks are isolated from each other. Having one slot per TaskManager means each task group runs in a separate JVM (which can be started in a separate container, for example). Having multiple slots means more subtasks share the same JVM. Tasks in the same JVM share TCP connections (via multiplexing) and heartbeat messages. They may also share data sets and data structures, thus reducing the per-task overhead.

参考文档

Flink Distributed Runtime Environment

Flink(三) —— 运行架构的更多相关文章

  1. Flink 的运行架构详细剖析

    1. Flink 程序结构 Flink 程序的基本构建块是流和转换(请注意,Flink 的 DataSet API 中使用的 DataSet 也是内部流 ).从概念上讲,流是(可能永无止境的)数据记录 ...

  2. Flink| 运行架构

    1. Flink运行时组件 作业管理器(JobManager) 任务管理器(TaskManager) 资源管理器(ResourceManager) 分发器(Dispatcher) 2. 任务提交流程 ...

  3. hadoop记录-[Flink]Flink三种运行模式安装部署以及实现WordCount(转载)

    [Flink]Flink三种运行模式安装部署以及实现WordCount 前言 Flink三种运行方式:Local.Standalone.On Yarn.成功部署后分别用Scala和Java实现word ...

  4. 01-Flink运行架构

    1.flink运行时的组件 ​ Flink 运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作: 作业管理器(JobManager).资源管理器(ResourceManager). ...

  5. Flink(二)【架构原理,组件,提交流程】

    目录 一.运行架构 1.架构 2.组件 二.核心概念 TaskManager . Slots Parallelism(并行度) Task .Subtask Operator Chains(任务链) E ...

  6. Spark入门实战系列--4.Spark运行架构

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1. Spark运行架构 1.1 术语定义 lApplication:Spark Appli ...

  7. 【转载】Spark运行架构

    1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个 ...

  8. Apache Flink 分布式运行时环境

    Tasks and Operator Chains(任务及操作链) 在分布式环境下,Flink将操作的子任务链在一起组成一个任务,每一个任务在一个线程中执行.将操作链在一起是一个不错的优化:它减少了线 ...

  9. 朱晔的互联网架构实践心得S1E8:三十种架构设计模式(下)

    朱晔的互联网架构实践心得S1E8:三十种架构设计模式(下) [下载本文PDF进行阅读] 接上文,继续剩下的15个模式. 数据管理模式 16.分片模式:将数据存储区划分为一组水平分区或分片 一直有一个说 ...

  10. spark 运行架构

    spark 运行架构基本由三部分组成,包括SparkContext(驱动程序),ClusterManager(集群资源管理器)和Executor(任务执行过程)组成. 其中SparkContext负责 ...

随机推荐

  1. mybatis的一对多和多对一的连接查询

    实体类: package com.entity; import java.util.List; public class Dept { private Integer deptId; private ...

  2. jsch通过SSH2执行linux命令

    public class SSHUtils { private Channel channel; private Session session = null; private int timeout ...

  3. UVA - 10934 Dropping water balloons(装满水的气球)(dp)

    题意:有k个气球,n层楼,求出至少需要多少次实验能确定气球的硬度.气球不会被实验所“磨损”. 分析: 1.dp[i][j]表示第i个气球,测试j次所能确定的最高楼层. 2.假设第i-1个气球测试j-1 ...

  4. java 简单的冒泡

    import java.util.Arrays; public class mao { public static void main(String[] args) { int [] array={1 ...

  5. 「不会」Min25筛

    大概的思路是把所有数分成质数和合数考虑 对于质数,必须找出一个很简单的完全积性函数和所求函数拟合 把所有数当做质数看待求个前缀和,然后再枚举合数的最小质因子把合数T掉 枚举到根号n,即可保证把n以内的 ...

  6. render_template()的各种用法

    1.可以有很多个参数,第一个一定是模板的名字 2.可以传字典.列表.单个变量等等,还可以传函数,在模板中调用函数 后端函数: from flask import Flask from flask im ...

  7. Java简单调用Lua

    package lua; import org.keplerproject.luajava.LuaState; import org.keplerproject.luajava.LuaStateFac ...

  8. linux.linuxidc.com - /2011年资料/Android入门教程/

    本文转自 http://itindex.net/detail/15843-linux.linuxidc.com-%E8%B5%84%E6%96%99-android Shared by Yuan 用户 ...

  9. python中的API学习

    URL: url是统一资源定位符,对可以从互联网上得到的资源的位置和访问方法的一种简洁的表示,是互联网上标准资源的地址.互联网上的每个文件都有一个唯一的URL,它包含的信息指出文件的位置以及浏览器应该 ...

  10. 86.QuerySet API常用的方法详解:get方法

    get方法的查询条件只能有一条数据满足,如果匹配到多条数据都满足,就会报错:如果没有匹配到满足条件的数据,也会报错. 示例代码如下: from django.http import HttpRespo ...