洛谷 P1890 gcd区间
P1890 gcd区间
题目提供者 洛谷OnlineJudge
标签 数论(数学相关)
难度 普及/提高-
题目描述
给定一行n个正整数a[1]..a[n]。
m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数。
输入输出格式
输入格式:
第一行两个整数n,m。
第二行n个整数表示a[1]..a[n]。
以下m行,每行2个整数表示询问区间的左右端点。
保证输入数据合法。
输出格式
共m行,每行表示一个询问的答案。
输入输出样例
输入样例#1:
5 3
4 12 3 6 7
1 3
2 3
5 5
输出样例#1:
1
3
7
说明
对于30%的数据,n <= 100, m <= 10
对于60%的数据,m <= 1000
对于100%的数据,1 <= n <= 1000,1 <= m <= 1,000,000
0 < 数字大小 <= 1,000,000,000
/*
区间型DP.
o(n^2logn).
用DP跑的原因是便于查询.
对于求gcd区间重叠是没问题的.
这题也可以挂在线段树上跑.
然后转移显然.
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#define MAXN 1001
using namespace std;
int f[MAXN][MAXN],n,m,x,y;
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++) f[i][i]=read();
for(int i=n;i>=1;i--)
for(int j=i;j<=n;j++)
{
if(i==j) continue;
f[i][j]=__gcd(f[i][j-1],f[i+1][j]);
}
while(m--)
printf("%d\n",f[x=read()][y=read()]);
return 0;
}
/*
o(nlogn+mlogn).
因为线段树查询是log的.
查询次数特别多.
所以跑起来会慢一些.
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#define MAXN 10001
using namespace std;
int n,m,tot,cut,a[MAXN];
struct data{int l,r,lc,rc,x;}tree[MAXN*4];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void build(int l,int r)
{
int k=++cut;
tree[k].l=l,tree[k].r=r;
if(l==r)
{
tree[k].x=read();a[++tot]=tree[k].x;return ;
}
int mid=(l+r)>>1;
tree[k].lc=cut+1;
build(l,mid);
tree[k].rc=cut+1;
build(mid+1,r);
tree[k].x=__gcd(tree[tree[k].lc].x,tree[tree[k].rc].x);
}
int query(int k,int l,int r)
{
if(l<=tree[k].l&&tree[k].r<=r)
{
return tree[k].x;
}
int tot=a[l];
int mid=(tree[k].l+tree[k].r)>>1;
if(l<=mid) tot=__gcd(tot,query(tree[k].lc,l,r));
if(r>mid) tot=__gcd(tot,query(tree[k].rc,l,r));
return tot;
}
int main()
{
int x,y;
n=read();m=read();
build(1,n);
while(m--)
{
x=read(),y=read();
printf("%d\n",query(1,x,y));
}
return 0;
}
洛谷 P1890 gcd区间的更多相关文章
- 洛谷——P1890 gcd区间
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...
- 洛谷P1890 gcd区间 [2017年6月计划 数论09]
P1890 gcd区间 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n ...
- 洛谷P1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...
- 洛谷1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...
- P1890 gcd区间
P1890 gcd区间我一开始80分暴力,模拟100做法dpO(n^2+m)f[i][j]表示i到j的 gcd初始化f[i][i]=i;f[i][j]=gcd(f[i][j-1],a[j]);这样查询 ...
- 洛谷P2398 GCD SUM (数学)
洛谷P2398 GCD SUM 题目描述 for i=1 to n for j=1 to n sum+=gcd(i,j) 给出n求sum. gcd(x,y)表示x,y的最大公约数. 输入输出格式 输入 ...
- 洛谷 1063 dp 区间dp
洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...
- BZOJ5259/洛谷P4747: [Cerc2017]区间
BZOJ5259/洛谷P4747: [Cerc2017]区间 2019.8.5 [HZOI]NOIP模拟测试13 C.优美序列 思维好题,然而当成NOIP模拟题↑真的好吗... 洛谷和BZOJ都有,就 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
随机推荐
- Java多线程模式(二)
Guarded Suspension Pattern 该模式描述的是当一个线程在执行某个操作时,但由于其他资源还没有准备好,需要等待,那么就等待资源准备好才开始自己的操作.我们直接看代码例子 ...
- SimpleTagImageView
https://github.com/wujingchao/SimpleTagImageView SimpleTagImageView ImageView with a tag in android. ...
- 工作vs.学�
近一两年来,我先后对[工作与学习]的复杂过程有过多次的头脑风暴,而且感觉在这方面略有所成(看这里和这里):当然既然仅仅是头脑风暴,所谓的所成也仅仅是一些粗糙的想法,一些没有实证过的如果,算是积累而已, ...
- 解析“extern”
解析“extern” 1. 声明外部变量 现代编译器一般採用按文件编译的方式,因此在编译时,各个文件里定义的全局变量是 互相透明的,也就是说,在编译时,全局变量的可见域限制在文件内部.以下举一个简单的 ...
- as3中使用stage ,root ,this 区别详解
stage:最顶层舞台root:stage的下一级舞台,属于第二层舞台(继承自DisplayObject)this:当前的对象(如果是主时间轴上的this,那它就是root) 继承方面:Stage - ...
- Python_爬虫3
正则表达式 在前面我们已经搞定了怎样获取页面的内容,不过还差一步,这么多杂乱的代码夹杂文字我们怎样把它提取出来整理呢?下面就开始介绍一个十分强大的工具,正则表达式! 1.了解正则表达式 正则表达式是对 ...
- mysql导入数据库
mysql -u root -p bbs < d:\bbs_2011-06-15 --default-character-set=gbk mysqldump -uroot -p ta ...
- ISO8583报文解析
在此只写了一个8583报文的拆包,组包其实也差不多的. 不多说直接上文件, 具体思路过程,在解析类里面写的有. 其中包含了四个文件 8583resp.txt报文 ISO8583medata配置文件 B ...
- 使用markdown及highlight
一.markdown 安装markdown2 pip install markdown2 应用markdown2 进入blog APP,创建templatetags文件夹,在文件夹内创建__init_ ...
- HDOJ2006求奇数的乘积
求奇数的乘积 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Subm ...