[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6
If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then the operators $$\bex U=\sex{\ba{cc} A&(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&-A^* \ea}, \eex$$ $$\bex V=\sex{\ba{cc} A&-(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&A^* \ea} \eex$$ are unitary operators on $\scrH\oplus \scrH$.
Solution.
(1). By the singular value decomposition, there exist unitaries $W,Q$ such that $$\bex A=WSQ^*,\quad S=\diag(s_1,\cdots,s_n),\quad s_i\geq 0, \eex$$ and hence $$\bex A^*=QSW^*. \eex$$ Consequently, $$\beex \ba{rlrl} AA^*&=WS^2W^*,&A^*A&=QS^2Q^*,\\ I-AA^*&=W(I-S^2)W^*,&I-A^*A&=Q(I-S^2)Q^*,\\ (I-AA^*)^{1/2}&=W\vLm W^*,& (I-A^*A^{1/2}&=Q\vLm Q^*, \ea \eeex$$ where $$\bex \vLm=\diag\sex{\sqrt{1-s_1^2},\cdots,\sqrt{1-s_n^2}}. \eex$$ Thus, $$\beex \bea A^*(I-AA^*)^{1/2}&=QS\vLm W^*\\ &=Q\diag\sex{s_1\sqrt{1-s_1^2},\cdots, s_n\sqrt{1-s_n^2}}W^*\\ &=Q\vLm S W^*\\ &=(I-A^*A)^{1/2} A^*. \eea \eeex$$
(2). As noticed in (1), $A$ is a contraction is equivalent to say that $A^*$ is a contraction. Direction computations with $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*,\quad A(I-A^*A)^{1/2}=(I-AA^*)^{1/2}A \eex$$ yields the fact that $U,V$ are unitary.
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6的更多相关文章
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1
Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7
For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10
Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5
Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1
Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6
Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4
(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8
For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7
The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...
- [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6
If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...
随机推荐
- 【go】脑补框架 Express beego tornado Flux reFlux React jsx jpg-ios出品
http://goexpresstravel.com/ 今天 Express 的作者 TJ Holowaychuk 发了一篇文章,正式宣告和 Node.js 拜拜了,转向 Go 语言. Go vers ...
- VPN销售管理系统一键安装包
wget http://d.zmrbk.com/vpn/zmrvpn.sh;chmod +x zmrvph.sh;sh zmrvpn.sh 2>&1 | tee zmrbk.com.lo ...
- Smarty格式化数字为INT数
<? require("setup.php"); define('PAGETITLE','pagtitle'); function insert_top($lid,$sid) ...
- DJANGO和UIKIT结合,作一个有进度条的无刷新上传功能
以前作的上传,在糙了,所以在用户体验上改进一下. 同时,结合DJANGO作定位上传. 这其中分两步进行,第一次上传到TMP目录下, 第二次,将TMP下的文件转移到标准目录下. form.py file ...
- HDU1411+四面体的体积
用cos sin各种乱搞之后 求出一个公式.. 但是怕精度损失厉害,还是暂且贴个公式的,copy别人的.. #include<stdio.h> #include<math.h> ...
- POJ3690+位运算
题意:给定一个01矩阵.T个询问,每次询问大矩阵中是否存在这个特定的小矩阵. /* 64位的位运算!!! 题意: 给定一个01矩阵.T个询问,每次询问大矩阵中是否存在这个特定的小矩阵. (64位记录状 ...
- png24是支持Alpha透明的。。。。。。
这个可能跟每个人使用切图软件有关. 1.Photoshop 1)只能导出布尔透明(全透明或者全不透明)的PNG8. 2)能导出alpha透明(全透明,全不透明,半透明)的PNG24. ...
- 图模型的统计推断 inference in graphical models(马尔科夫链的推断)
有关因子图(factor graphs)以及其在sum product 算法,max-algorithm中的应用,将在一下篇博客中分享. 谢谢您的关注,欢迎提出意见问题.
- Source Insight 安装使用
习惯了在source insight下编辑阅读源码,在linux下用vi总是用不好 ,还是在Ubuntu上用回熟悉的source insight. 在Ubuntu中,安装Windows程序用wine, ...
- 在Ubuntu 12.04安装和设置SSH服务
1.安装 Ubuntu缺省安装了openssh-client,所以在这里就不安装了,如果你的系统没有安装的话,再用apt-get安装上即可. 安装ssh-server sudo apt-get ins ...