If $A$ is a contraction, show that $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*. \eex$$ Use this to show that if $A$ is a contraction on $\scrH$, then the operators $$\bex U=\sex{\ba{cc} A&(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&-A^* \ea}, \eex$$ $$\bex V=\sex{\ba{cc} A&-(I-AA^*)^{1/2}\\ (I-A^*A)^{1/2}&A^* \ea} \eex$$ are unitary operators on $\scrH\oplus \scrH$.

Solution.

(1). By the singular value decomposition, there exist unitaries $W,Q$ such that $$\bex A=WSQ^*,\quad S=\diag(s_1,\cdots,s_n),\quad s_i\geq 0, \eex$$ and hence $$\bex A^*=QSW^*. \eex$$ Consequently, $$\beex \ba{rlrl} AA^*&=WS^2W^*,&A^*A&=QS^2Q^*,\\ I-AA^*&=W(I-S^2)W^*,&I-A^*A&=Q(I-S^2)Q^*,\\ (I-AA^*)^{1/2}&=W\vLm W^*,& (I-A^*A^{1/2}&=Q\vLm Q^*, \ea \eeex$$ where $$\bex \vLm=\diag\sex{\sqrt{1-s_1^2},\cdots,\sqrt{1-s_n^2}}. \eex$$ Thus, $$\beex \bea A^*(I-AA^*)^{1/2}&=QS\vLm W^*\\ &=Q\diag\sex{s_1\sqrt{1-s_1^2},\cdots, s_n\sqrt{1-s_n^2}}W^*\\ &=Q\vLm S W^*\\ &=(I-A^*A)^{1/2} A^*. \eea \eeex$$

(2). As noticed in (1), $A$ is a contraction is equivalent to say that $A^*$ is a contraction. Direction computations with $$\bex A^*(I-AA^*)^{1/2}=(I-A^*A)^{1/2}A^*,\quad A(I-A^*A)^{1/2}=(I-AA^*)^{1/2}A \eex$$ yields the fact that $U,V$ are unitary.

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.6的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  10. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. (转)sqlserver游标概念与实例全面解说

    首先声明:该文章转自http://www.cnblogs.com/wudiwushen/archive/2010/03/30/1700925.html  的博客 引言  我们先不讲游标的什么概念,步骤 ...

  2. EXTJS 3.0 资料 控件之 combo 用法

    EXTJS combo 控件: 1.先定义store //年款 var comboData_ReleasYear = [ ['], ['], ['], ['] ]; 2.定义combo控件 { lay ...

  3. Any Way You Slice It (向量旋转 以及 判断线段是否相交)(模板)

    http://acm.hunnu.edu.cn/online/?action=problem&type=show&id=11353 #include<iostream> # ...

  4. awk 的一个奇怪异常

    awk: cmd. line:1: (FILENAME=- FNR=192) fatal: print to "standard output" failed (No space ...

  5. Mapped Statements collection does not contain value for

    这是由pojo的映射文件的命名空间引起的错误. 按照以下格式即可:命名空间中一定要含有mapper.xxMapper这样的格式,否则出现以上错误. <?xml version="1.0 ...

  6. jQuery中的join方法

    和JS 中的JOIN 方法一样,将一数组按照JOIN的参数连接起来.比如: var arr = [ "a", "b", "c", " ...

  7. python语法-[with来自动释放对象]

    python语法-[with来自动释放对象] http://www.cnblogs.com/itech/archive/2011/01/13/1934779.html 一 with python中的w ...

  8. Qt官网变更【2012】

    Qt最近被Digia完全收购,诺基亚这两年的不理不睬,没有魄力,不仅断送了他的手机霸主地位,也耽误了Qt这两年的快速发展. 希望Digia能让Qt真正实现 run everywhere. 最近Qt的官 ...

  9. Git教程之删除文件(8)

    在Git中,删除也是一个修改操作,我们实战一下,先添加一个新文件test.txt到Git并且提交:

  10. 188. Best Time to Buy and Sell Stock IV

    题目: 链接: 题解: 测试: Reference: