CodeForces 164C Machine Programming 费用流
Machine Programming
题目连接:
http://codeforces.com/problemset/problem/164/B
Descriptionww.co
One remarkable day company "X" received k machines. And they were not simple machines, they were mechanical programmers! This was the last unsuccessful step before switching to android programmers, but that's another story.
The company has now n tasks, for each of them we know the start time of its execution si, the duration of its execution ti, and the company profit from its completion ci. Any machine can perform any task, exactly one at a time. If a machine has started to perform the task, it is busy at all moments of time from si to si + ti - 1, inclusive, and it cannot switch to another task.
You are required to select a set of tasks which can be done with these k machines, and which will bring the maximum total profit.
Input
The first line contains two integer numbers n and k (1 ≤ n ≤ 1000, 1 ≤ k ≤ 50) — the numbers of tasks and machines, correspondingly.
The next n lines contain space-separated groups of three integers si, ti, ci (1 ≤ si, ti ≤ 109, 1 ≤ ci ≤ 106), si is the time where they start executing the i-th task, ti is the duration of the i-th task and ci is the profit of its execution.
Output
Print n integers x1, x2, ..., xn. Number xi should equal 1, if task i should be completed and otherwise it should equal 0.
If there are several optimal solutions, print any of them.
Sample Input
3 1
2 7 5
1 3 3
4 1 3
Sample Output
0 1 1
Hint
题意
有n个任务,m个机器,每个机器同一时间只能处理一个任务
每个任务开始时间为s,持续时间为t,做完可以赚c元
问你做哪几个任务可以拿到最多的钱
输出方案
题解:
费用流
离散化每个任务的开始时间和结束时间,然后建图跑一遍就好了
把所有时间扔到一个队列里面排序
然后建立源点到最开始任务的起始时间-第二个时间-第三个时间-....-最后一个时间点-汇点,期间流量都是m,花费为0
然后对于每一个任务,连一条开始时间到结束时间+1的边,花费为-c,流量为1的
然后这样跑费用流一定就是答案了
代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 10000;
const int MAXM = 100000;
const int INF = 0x3f3f3f3f;
struct Edge
{
int to, next, cap, flow, cost;
int id;
int x, y;
} edge[MAXM],HH[MAXN],MM[MAXN];
int head[MAXN],tol;
int pre[MAXN],dis[MAXN];
bool vis[MAXN];
int N, M;
void init()
{
N = MAXN;
tol = 0;
memset(head, -1, sizeof(head));
}
int addedge(int u, int v, int cap, int cost, int id)//左端点,右端点,容量,花费
{
edge[tol]. to = v;
edge[tol]. cap = cap;
edge[tol]. cost = cost;
edge[tol]. flow = 0;
edge[tol]. next = head[u];
edge[tol]. id = id;
int t = tol;
head[u] = tol++;
edge[tol]. to = u;
edge[tol]. cap = 0;
edge[tol]. cost = -cost;
edge[tol]. flow = 0;
edge[tol]. next = head[v];
edge[tol]. id = id;
head[v] = tol++;
return tol;
}
bool spfa(int s, int t)
{
queue<int>q;
for(int i = 0; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i != -1; i = edge[i]. next)
{
int v = edge[i]. to;
if(edge[i]. cap > edge[i]. flow &&
dis[v] > dis[u] + edge[i]. cost )
{
dis[v] = dis[u] + edge[i]. cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t] == -1) return false;
else return true;
}
//返回的是最大流, cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
int flow = 0;
cost = 0;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
{
if(Min > edge[i]. cap - edge[i]. flow)
Min = edge[i]. cap - edge[i]. flow;
}
for(int i = pre[t]; i != -1; i = pre[edge[i^1]. to])
{
edge[i]. flow += Min;
edge[i^1]. flow -= Min;
cost += edge[i]. cost * Min;
}
flow += Min;
}
return flow;
}
struct node
{
int st,et,ct;
int id;
}task[MAXN];
bool cmp(node A,node B)
{
if(A.st==B.st)return A.et<B.et;
return A.st<B.st;
}
map<int,int> H;
vector<int> V;
int id[3000];
int main()
{
int n, m;
scanf("%d%d",&n,&m);
init();
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&task[i].st,&task[i].et,&task[i].ct);
task[i].et+=task[i].st-1;
task[i].id=i;
V.push_back(task[i].st);
V.push_back(task[i].et);
}
sort(V.begin(),V.end());
V.erase(unique(V.begin(),V.end()),V.end());
for(int i=0;i<V.size();i++)
H[V[i]]=i+1;
for(int i=1;i<=V.size();i++)
addedge(i-1,i,m,0,0);
addedge(V.size(),V.size()+1,m,0,0);
addedge(V.size()+1,V.size()+2,m,0,0);
for(int i=1;i<=n;i++)
id[i]=addedge(H[task[i].st],H[task[i].et]+1,1,-task[i].ct,i);
int ans1=0,ans2=0;
ans1=minCostMaxflow(0,V.size()+2,ans2);
//printf("%d\n",ans2);
for(int i=1;i<=n;i++)
printf("%d ",edge[id[i]-2].flow);
return 0;
}
CodeForces 164C Machine Programming 费用流的更多相关文章
- Codeforces 708D 上下界费用流
给你一个网络流的图 图中可能会有流量不平衡和流量>容量的情况存在 每调整一单位的流量/容量 需要一个单位的花费 问最少需要多少花费使得原图调整为正确(可行)的网络流 设当前边信息为(u,v,f, ...
- codeforces gym 100357 I (费用流)
题目大意 给出一个或与表达式,每个正变量和反变量最多出现一次,询问是否存在一种方案使得每个或式中有且仅有一个变量的值为1. 解题分析 将每个变量拆成三个点x,y,z. y表示对应的正变量,z表示对应的 ...
- CodeForces 1187G Gang Up 费用流
题解: 先按时间轴将一个点拆成100个点. 第一个点相当于第一秒, 第二个点相当于第二秒. 在这些点之间连边, 每1流量的费用为c. 再将图上的边也拆开. 将 u_i 向 v_i+1 建边. 将 v_ ...
- Codeforces 最大流 费用流
这套题目做完后,一定要反复的看! 代码经常出现的几个问题: 本机测试超时: 1.init函数忘记写. 2.addedge函数写成add函数. 3.边连错了. 代码TLE: 1.前向星边数组开小. 2. ...
- Codeforces Gym 100002 E "Evacuation Plan" 费用流
"Evacuation Plan" Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/10 ...
- Codeforces Gym 101190M Mole Tunnels - 费用流
题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\rig ...
- Codeforces 280D k-Maximum Subsequence Sum [模拟费用流,线段树]
洛谷 Codeforces bzoj1,bzoj2 这可真是一道n倍经验题呢-- 思路 我首先想到了DP,然后矩阵,然后线段树,然后T飞-- 搜了题解之后发现是模拟费用流. 直接维护选k个子段时的最优 ...
- BZOJ 3836 Codeforces 280D k-Maximum Subsequence Sum (模拟费用流、线段树)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=3836 (Codeforces) http://codeforces.com ...
- Codeforces 730I [费用流]
/* 不要低头,不要放弃,不要气馁,不要慌张 题意: 给两行n个数,要求从第一行选取a个数,第二行选取b个数使得这些数加起来和最大. 限制条件是第一行选取了某个数的条件下,第二行不能选取对应位置的数. ...
随机推荐
- <面试经典题>输入框的功能测试点分析
(废话几句:这个是网上找来的一份模板,高亮部分为自己修改内容,且此面试题很像当年高考的“必考题”性质,触类旁通吧) 1. 输入框UI是否预计了输入内容长度(尽量完整的显示输入内容): 2. 输入框之前 ...
- CString类Format()的用法 .xml
pre{ line-height:1; color:#9f1d66; background-color:#f0f0f0; font-size:16px;}.sysFunc{color:#5d57ff; ...
- 七牛云实现js上传
七牛云的官方API写的一塌糊涂.最主要的,还是版本兼容的问题. 一.引入文件 引入了两个文件: 1.jquery-1.10.2.min.js 2.plupload.full.min.js 3.qini ...
- Asp.net MVC4 使用EF实现数据库的增删改查
EF的使用 步骤: (1)将EF添加到项目:在Model右击添加新建项 找到ADO.NET实体数据模型,接着... (2)实现数据库的增删改查 查询 (因为在Model中已经添加EF实体了 ...
- JavaScript操作DOM的那些坑
js在操作DOM中存在着许多跨浏览器方面的坑,本文花了我将近一周的时间整理,我将根据实例整理那些大大小小的“坑”. DOM的工作模式是:先加载文档的静态内容.再以动态方式对它们进行刷新,动态刷新不影响 ...
- 【开源项目之路】jquery的build问题
在刚开始clone了jquery到本地build的时候,就遇到了问题. “ENORESTARGET No tag found that was able to satisfy ...” 提示为bowe ...
- springMVC的详细步骤配置
使用springMVC也可以代替struts2,当然只是代替业务分发的功能,struts2的一些其他功能它是没有的,不然要struts2有什么用. 下面我用springMVC代替struts2去整合h ...
- js运动 九宫格展开
<!doctype html> <html> <head> <meta charset = "utf-8"> <title&g ...
- RHAS Linux下架构Lotus Domino详解(附视频)
此处下载操作视频:RHAS Linux下架构Lotus Domino 6.5视频教程 在rhas下架构Lotus Domino 汉化 650) this.width=650;" o ...
- 游戏模块分析总结(2)之UI、操作篇
转自:http://www.gameres.com/309812.html 游戏模块分析总结(2)之UI.操作篇 发布者: wuye | 发布时间: 2014-12-12 15:03| 评论数: 0 ...