题目链接:

第K大区间2

基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160

定义一个长度为奇数的区间的值为其所包含的的元素的中位数。中位数_百度百科

现给出n个数,求将所有长度为奇数的区间的值排序后,第K大的值为多少。

样例解释:

[l,r]表示区间的值
[1]:3
[2]:1
[3]:2
[4]:4
[1,3]:2
[2,4]:2

第三大是2

Input
第一行两个数n和k(1<=n<=100000,k<=奇数区间的数量)
第二行n个数,0<=每个数<2^31
Output
一个数表示答案。
Input示例
4 3
3 1 2 4
Output示例
2

题意:

思路:

二分答案t,统计中位数大于等于t的区间有多少个。
设a[i]为前i个数中有a[i]个数>=t,若奇数区间[l,r]的中位数>=t,则(a[r]-a[l-1])*2>r-l+1,即(a[r]*2-r)>(a[l-1]*2-l+1)。
设b[i]=a[i]*2-i,统计每个b[i]有多少个b[j]<b[i](j<i 且 j和i奇偶性不同)
总复杂度O(nlognlogn)

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e10;
const int N=1e5+; int n,k;
int a[N],b[N],sum[][N]; int lowbit(int x)
{
return x&(-x);
}
void update(int x,int flag)
{
while(x<=n)
{
sum[flag][x]++;
x+=lowbit(x);
}
}
int query(int x,int flag)
{
int s=;
while(x>)
{
s+=sum[flag][x];
x-=lowbit(x);
}
return s;
} struct node
{
int temp,pos,id;
}po[N];
int cmp1(node x,node y)
{
if(x.temp==y.temp)return x.pos<y.pos;
return x.temp<y.temp;
}
int cmp2(node x,node y)
{
return x.pos<y.pos;
}
int check(LL x)
{
mst(sum,);
Riep(n)
{
b[i]=b[i-]+(a[i]>=x?:);
po[i].temp=*b[i]-i;
po[i].pos=i;
}
sort(po+,po+n+,cmp1);
Riep(n)po[i].id=i;
sort(po+,po+n+,cmp2);
LL ans=;
Riep(n)
{
if(po[i].temp>&&i%==)ans++;//包括0的;
ans=ans+query(po[i].id,i&^);
update(po[i].id,i&);
}
if(ans>=k)return ;
return ;
} int main()
{
read(n);read(k);
Riep(n)read(a[i]);
LL l=,r=inf;
while(l<=r)
{
LL mid=(l+r)>>;
if(check(mid))l=mid+;
else r=mid-;
}
print(l-);
return ;
}

51nod 第K大区间2(二分+树状数组)的更多相关文章

  1. ACM学习历程—51NOD 1685 第K大区间2(二分 && 树状数组 && 中位数)

    http://www.51nod.com/contest/problem.html#!problemId=1685 这是这次BSG白山极客挑战赛的E题. 这题可以二分答案t. 关键在于,对于一个t,如 ...

  2. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  3. BZOJ.3110.[ZJOI2013]K大数查询(整体二分 树状数组/线段树)

    题目链接 BZOJ 洛谷 整体二分求的是第K小(利用树状数组).求第K大可以转为求第\(n-K+1\)小,但是这样好像得求一个\(n\). 注意到所有数的绝对值\(\leq N\),将所有数的大小关系 ...

  4. hdu-5700 区间交(二分+树状数组)

    题目链接: 区间交 Problem Description   小A有一个含有n个非负整数的数列与mm个区间.每个区间可以表示为l​i​​,r​i​​. 它想选择其中k个区间, 使得这些区间的交的那些 ...

  5. BZOJ 3110([Zjoi2013]K大数查询-区间第k大[段修改,在线]-树状数组套函数式线段树)

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec   Memory Limit: 512 MB Submit: 418   Solved: 235 [ Submit][ ...

  6. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

  7. BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组

    BZOJ_3110_[Zjoi2013]K大数查询_整体二分+树状数组 Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位 ...

  8. [bzoj1901][zoj2112][Dynamic Rankings] (整体二分+树状数组 or 动态开点线段树 or 主席树)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  9. CodeForces992E 二分 + 树状数组(线段树)

    http://codeforces.com/problemset/problem/992/E 题意:给定一个序列 ai​ ,记其前缀和序列为 si​ ,有 q 个询问,每次单点修改,询问是否存在一个  ...

随机推荐

  1. Windows操作系统单文件夹下到底能存放多少文件及单文件的最大容量

    本文是转自:http://hi.baidu.com/aqgjoypubihoqxr/item/c896921f8c2eaba5feded5f2         最近需要了解Windows中单个文件夹下 ...

  2. DbHelperSQL和Dapper数据访问的性能对比

    http://www.cnblogs.com/finesite/archive/2012/08/23/2652491.html

  3. 移动端翻页插件dropload.js(支持Zepto和jQuery)

    一. 声明 代码来源:github上的dropload项目. 二. 问题 dropload.js提供了最基本的上拉翻页,下拉刷新功能.对于由服务端一次返回所有数据的情况基本通用. 但是,需求往往不是服 ...

  4. JAVA核心技术--继承

    1.继承:向上追溯,对同一批类的抽象,延续和扩展父类的一切信息! 1)关键字:extends      例如,父类是Animal,子类是Dog;   eg: public class Dog exte ...

  5. C++学习笔记之由文本文件读取数据到vector模板建立的二维数组 并存储为新的文本文件

    阅读本文可首先参考: C++学习笔记之输入.输出和文件 测试数据: /*读取txt文件到二维数组*/ #include <iostream> #include <fstream> ...

  6. cocos2d jsb 打包 Android APK

    1.首先要会普通的cpp 打包成Android APK 下面所说的是在cocos2d-x 2.2.2 或者 2.3 版本号中.本文在Eclipse总用ndk编译cocos2d-x. 老生常谈cocos ...

  7. HttpRequest类

    一.HttpRequest的作用 HttpRequest的作用是令到Asp.net能够读取客户端发送HTTP值.比如表单.URL.Cookie传递过来的参数. 返回字符串的那些值就不说了,那些基本上都 ...

  8. 为C# Windows服务添加安装程序

    最近一直在搞Windows服务,也有了不少经验,感觉权限方面确定比一般程序要受限很多,但方便性也很多.像后台运行不阻塞系统,不用用户登录之类.哈哈,扯远了,今天讲一下那个怎么给Windows服务做个安 ...

  9. CSS3 Animation 基于 less 构建的 css3 动画库

    LESS动画优点 · 快速开发css3动画 · 采用less mixins写法,不会生成冗余css · 已加入主流浏览器前缀,保证最大兼容性 · LESS-Animation 部分mixins支持传参 ...

  10. TLS握手优化详解

      随着 HTTP/2 的逐渐普及,以及国内网络环境越来越糟糕(运营商劫持和篡改),HTTPS 已经开始成为主流.HTTPS 在 TCP 和 HTTP 之间增加了 TLS(Transport Laye ...