Power of Cryptography 

Background

Current work in cryptography involves (among other things) large prime numbers and computing powers of numbers modulo functions of these primes. Work in this area has resulted in the practical use of results from number theory and other branches of mathematics once considered to be of only theoretical interest.

This problem involves the efficient computation of integer roots of numbers.

The Problem

Given an integer  and an integer  you are to write a program that determines  , the positive root of p. In this problem, given such integers n and pp will always be of the form  for an integerk (this integer is what your program must find).

The Input

The input consists of a sequence of integer pairs n and p with each integer on a line by itself. For all such pairs  ,  and there exists an integer k such that  .

The Output

For each integer pair n and p the value  should be printed, i.e., the number k such that  .

Sample Input

2
16
3
27
7
4357186184021382204544

Sample Output

4
3
1234

double能表示的范围是-1.7e308 ~ 1.7e308,精度至少为15位,而输出结果在int的范围内,即10位,所以可以输出可以用double

至于计算过程中为什么能用double而不会影响到结果,我也暂时没搞懂,因为double的精度只有15位,最多也才有16位,但是p的范围是10^101,输入过程中用的也不是科学计数法,15位后的值肯定被抹掉了,结果却是对的。

正确的分析应该在这:http://blog.csdn.net/synapse7/article/details/11672691,用到了误差分析,得出的结果是在这一题里失去的精度不会影响答案,等我数学补上来之后来研究(吐槽一下网上的好多人,风轻云淡的就发上来了,真的懂了么?自己不扎实不要紧,关键在于误导了新手)

 #include<stdio.h>
#include<math.h> int main(void)
{
double n,p; while(scanf("%lf%lf",&n,&p) != EOF)
printf("%.lf\n",pow(p, / n)); return ;
}

UVA 113 Power of Cryptography (数学)的更多相关文章

  1. POJ-2109 Power of Cryptography(数学或二分+高精度)

    题目链接: https://vjudge.net/problem/POJ-2109 题目大意: 有指数函数 k^n = p , 其中k.n.p均为整数且 1<=k<=10^9 , 1< ...

  2. Power of Cryptography(用double的泰勒公式可行分析)

    Power of Cryptography Time limit: 3.000 seconds http://uva.onlinejudge.org/index.php?option=com_onli ...

  3. [POJ2109]Power of Cryptography

    [POJ2109]Power of Cryptography 试题描述 Current work in cryptography involves (among other things) large ...

  4. 贪心 POJ 2109 Power of Cryptography

    题目地址:http://poj.org/problem?id=2109 /* 题意:k ^ n = p,求k 1. double + pow:因为double装得下p,k = pow (p, 1 / ...

  5. poj 2109 Power of Cryptography

    点击打开链接 Power of Cryptography Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 16388   Ac ...

  6. Poj 2109 / OpenJudge 2109 Power of Cryptography

    1.Link: http://poj.org/problem?id=2109 http://bailian.openjudge.cn/practice/2109/ 2.Content: Power o ...

  7. POJ2109——Power of Cryptography

    Power of Cryptography DescriptionCurrent work in cryptography involves (among other things) large pr ...

  8. uva 10330 - Power Transmission(网络流)

    uva 10330 - Power Transmission 题目大意:最大流问题. 解题思路:増广路算法. #include <stdio.h> #include <string. ...

  9. UVA 11149 - Power of Matrix(矩阵乘法)

    UVA 11149 - Power of Matrix 题目链接 题意:给定一个n*n的矩阵A和k,求∑kiAi 思路:利用倍增去搞.∑kiAi=(1+Ak/2)∑k/2iAi,不断二分就可以 代码: ...

随机推荐

  1. My集合框架第五弹 最小堆

    二叉堆(以最小堆为例),其具有结构性质和堆序性质结构性质: 堆是一棵完全的二叉树,一颗高为h的完全二叉树有2^h到2^h-1个节点,高度为log N            而且该结构可以很容易的使用数 ...

  2. IOS深入学习(19)之View object

    1 前言 本章主要介绍了View视图对象,包括了其属性,视图间关系和CALayer的简介. 英文原文:http://blog.csdn.net/developer_zhang/article/deta ...

  3. 启动tomcat时 一闪而过解决方法

    1 首先确定JAVA 已经配好了环境变量,具体配置方法,找一下度娘. 测试方法:进入cmd -> javac -version 能看到JAVA的版本信息,证明配置成功了. 2 分析一下问题出现的 ...

  4. Arrays, Hashtables and Dictionaries

    Original article Built-in arrays Javascript Arrays(Javascript only) ArrayLists Hashtables Generic Li ...

  5. 编写一个JavaScript函数 parseQueryString,把URL参数解析为一个对象

    var url="http://www.taobao.com/index.php?key0=0&key1=1&key2=2"; function parseQuer ...

  6. Windows Server Backup备份Exchange2010

    在Windows Server 2008 R2 SP1上Exchange2010 DAG备份测试成功: 1.分别在DAG成员服务器上安装WSB,不可以安装其命令行工具,因为其需要早期的PowerShe ...

  7. Shadow Mapping 的原理与实践(二)

    3) 定义并生成Shadow Map纹理 texture2D Lamp0ShadowMapColor : RENDERCOLORTARGET < float2 ViewPortRatio = { ...

  8. [CoffeeScript] Level 4 Arrays, Objects, Iterations -- Ex

    Coffee on the Range Create an array with numbers 1 until 10 using the inclusive (two dot) range synt ...

  9. oc-23-static

    #import <Foundation/Foundation.h> #import "Person.h" int main(int argc, const char * ...

  10. “惊群”,看看nginx是怎么解决它的

    在说nginx前,先来看看什么是“惊群”?简单说来,多线程/多进程(linux下线程进程也没多大区别)等待同一个socket事件,当这个事件发生时,这些线程/进程被同时唤醒,就是惊群.可以想见,效率很 ...