Delay Constrained Maximum Capacity Path

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=1839

Description

Consider an undirected graph with N vertices, numbered from 1 to N, and M edges. The vertex numbered with 1 corresponds to a mine from where some precious minerals are extracted. The vertex numbered with N corresponds to a minerals processing factory. Each edge has an associated travel time (in time units) and capacity (in units of minerals). It has been decided that the minerals which are extracted from the mine will be delivered to the factory using a single path. This path should have the highest capacity possible, in order to be able to transport simultaneously as many units of minerals as possible. The capacity of a path is equal to the smallest capacity of any of its edges. However, the minerals are very sensitive and, once extracted from the mine, they will start decomposing after T time units, unless they reach the factory within this time interval. Therefore, the total travel time of the chosen path (the sum of the travel times of its edges) should be less or equal to T.

Input

The first line of input contains an integer number X, representing the number of test cases to follow. The first line of each test case contains 3 integer numbers, separated by blanks: N (2 <= N <= 10.000), M (1 <= M <= 50.000) and T (1 <= T <= 500.000). Each of the next M lines will contain four integer numbers each, separated by blanks: A, B, C and D, meaning that there is an edge between vertices A and B, having capacity C (1 <= C <= 2.000.000.000) and the travel time D (1 <= D <= 50.000). A and B are different integers between 1 and N. There will exist at most one edge between any two vertices.

Output

For each of the X test cases, in the order given in the input, print one line containing the highest capacity of a path from the mine to the factory, considering the travel time constraint. There will always exist at least one path between the mine and the factory obbeying the travel time constraint.

Sample Input

2
2 1 10
1 2 13 10
4 4 20
1 2 1000 15
2 4 999 6
1 3 100 15
3 4 99 4

Sample Output

13
99

HINT

题意

有N个点,点1为珍贵矿物的采矿区, 点N为加工厂,有M条双向连通的边连接这些点。走每条边的运输容量为C,运送时间为D。
他们要选择一条从1到N的路径运输, 这条路径的运输总时间要在T之内,在这个前提之下,要让这条路径的运输容量尽可能地大。
一条路径的运输容量取决与这条路径中的运输容量最小的那条边。

题解:

二分cap,然后直接最短路判断就好了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define test freopen("test.txt","r",stdin)
#define maxn 500001
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
const int inf=0x7fffffff;
const ll infll = 0x3f3f3f3f3f3f3f3fLL;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
}
//************************************************************************************** int n,m,t;
struct node
{
int x;
ll y;
int z;
};
bool cmp(ll a,ll b)
{
return a>b;
}
vector<node> e[maxn];
ll c[maxn];
int inq[maxn];
int d[maxn];
int solve(int x)
{
for(int i=;i<=n;i++)
d[i]=inf;
d[]=;
queue<int> q;
q.push();
while(!q.empty())
{
int v=q.front();
q.pop();
for(int i=;i<e[v].size();i++)
{
if(e[v][i].y>=x)
{
if(d[e[v][i].x]>d[v]+e[v][i].z)
{
d[e[v][i].x]=d[v]+e[v][i].z;
q.push(e[v][i].x);
}
}
}
}
return d[n];
}
int main()
{
//test;
int T=read();
while(T--)
{
n=read(),m=read(),t=read();
for(int i=;i<maxn;i++)
e[i].clear();
memset(c,,sizeof(c));
for(int i=;i<m;i++)
{
int a=read(),b=read();
c[i]=read();
int d=read();
e[a].push_back((node){b,c[i],d});
e[b].push_back((node){a,c[i],d});
}
sort(c,c+m,cmp);
int l=,r=m-,mid;
while(l<r)
{
mid=(l+r)/;
int tmp=c[mid];
if(solve(tmp)>t)
l=mid+;
else
r=mid;
}
cout<<c[l]<<endl;
}
}

 

hdu 1839 Delay Constrained Maximum Capacity Path 二分/最短路的更多相关文章

  1. hdu 1839 Delay Constrained Maximum Capacity Path(spfa+二分)

    Delay Constrained Maximum Capacity Path Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 65 ...

  2. hdu 1839 Delay Constrained Maximum Capacity Path

    最短路+二分. 对容量进行二分,因为容量和时间是单调关系的,容量越多,能用的边越少,时间会不变或者增加. 因为直接暴力一个一个容量去算会TLE,所以采用二分. #include<cstdio&g ...

  3. HDU 2254 奥运(矩阵高速幂+二分等比序列求和)

    HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意:  中问题不解释. 分析:  依据floyd的算法,矩阵的k次方表示这个矩阵走了k步.  所以k ...

  4. 【启发式搜索】Codechef March Cook-Off 2018. Maximum Tree Path

    有点像计蒜之道里的 京东的物流路径 题目描述 给定一棵 N 个节点的树,每个节点有一个正整数权值.记节点 i 的权值为 Ai.考虑节点 u 和 v 之间的一条简单路径,记 dist(u, v) 为其长 ...

  5. Codechef March Cook-Off 2018. Maximum Tree Path

    目录 题意 解析 AC_code @(Codechef March Cook-Off 2018. Maximum Tree Path) 题意 给你一颗\(n(1e5)\)个点有边权有点权的树,\(Mi ...

  6. 二分+最短路 UVALive - 4223

    题目链接:https://vjudge.net/contest/244167#problem/E 这题做了好久都还是超时,看了博客才发现可以用二分+最短路(dijkstra和spfa都可以),也可以用 ...

  7. 2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举

    2018-2019 ACM-ICPC Nordic Collegiate Programming Contest (NCPC 2018)- D. Delivery Delays -二分+最短路+枚举 ...

  8. 二分+最短路 uvalive 3270 Simplified GSM Network(推荐)

    // 二分+最短路 uvalive 3270 Simplified GSM Network(推荐) // 题意:已知B(1≤B≤50)个信号站和C(1≤C≤50)座城市的坐标,坐标的绝对值不大于100 ...

  9. BZOJ_1614_ [Usaco2007_Jan]_Telephone_Lines_架设电话线_(二分+最短路_Dijkstra/Spfa)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1614 分析 类似POJ_3662_Telephone_Lines_(二分+最短路) Dijks ...

随机推荐

  1. Android 应用启动速度优化

    现在很多的应用一开始点击的时候总会出现黑屏或者白屏,甚至前段时间微信也有同样的问题.其实白屏或者黑屏还是一些其他的东西,都是因为Android 主题的问题,只要自己自定义一个启动主题,问题完美解决. ...

  2. [转]linux之nl命令

    转自:http://www.cnblogs.com/peida/archive/2012/11/01/2749048.html nl命令在linux系统中用来计算文件中行号.nl 可以将输出的文件内容 ...

  3. VC6.0到VS2013全部版本下载地址

    Microsoft Visual Studio 6.0 下载:英文版360云盘下载: http://l11.yunpan.cn/lk/sVeBLC3bhumrI英文版115网盘下载: http://1 ...

  4. Intent传输数据的补充

    发现用intent的putExtra()或者putExtras()传输的都是基本数据类型. 如果要传输自定义数据类型,就要用到其他方法,老罗介绍的大概有3种: 1.  静态变量 2.  全局变量 3. ...

  5. ps 图片提取线稿方法2种 转

  6. 【boost】使用lambda表达式和generate_n生成顺序序列

    程序中经常用到顺序序列(0,1,2,3,4,5,6.....),一直羡慕python有range这样的函数,而C++中通常只有用循环来处理这种初始化. 现在,结合boost库lambda(虽然差C++ ...

  7. PHP代码格式化批量脚本

    @echo off echo please input phpCB url: set /p input= cd /d "E:\tools\phpCB\" phpCB --space ...

  8. android 开发必用的开源库

    LogReport:  https://github.com/wenmingvs/LogReport,   崩溃日志上传框架 wcl-permission-demo:Android 6.0 - 动态权 ...

  9. Fedora 16设置开机自启动程序与Ubuntu的区别

    Ubuntu设置开机自启动脚本的方法是:修改/etc/init.d/rc.local这个文件,添加需要启动的程序即可,相关函数如下: void SetSysAutoBoot() { ] = {}; ; ...

  10. 恢复HDFS误删数据

    [恢复HDFS误删数据] HDFS会为每一个用户创建一个回收站目录:/user/用户名/.Trash/,每一个被用户通过Shell删除的文件/目录,在系统回收站中都一个周期,也就是当系统回收站中的文件 ...