Raney引理:

设整数序列A = {Ai, i=1, 2, …, N},且部分和Sk=A1+…+Ak,序列中所有的数字的和SN=1,在A的N个循环表示中,有且仅有一个序列B,满足B的任意部分和Si均大于零。

Raney引理有一个很简单的数形结合的证明见《浅谈数形结合思想在信息学竞赛中的应用》。

关于Catalan数wiki和百科上写的很详细,其中有一问题一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?该问题的解为h(n)。

用1表示一个数字进栈,-1表示一个数字出栈,不难看出该问题的解等价于一个含n个1和n个-1的序列,并且满足其任意前缀和大于等于0的排列数。但是这个序列与我们Raney引理要求序列不太相同,所以我们给这个序列多加一个1,即(n+1)个1和n个-1的序列A{2n+1},现在我们可以应用Raney引理了,A{2n+1}所有可能的排列总数为C(2n+1,n),而循环不同构的串是组合数的一个划分,再根据Raney引理可知在一个循环同构的等价类中,只有一个串满足任意前缀和大于零,所以满足条件的排列数为C(2n+1, n)/(2n+1),而由于任意前缀和大于0,所以第一位只能是1而不是-1,所以又可以得出除去第一位后,满足任意前缀和大于>=0的A{2n}序列总数也为C(2n+1, n)/(2n+1) = C(2n, n)/(n+1),这个便是Catalan的通项公式。

Catalan数推导(转载)的更多相关文章

  1. 上一篇括号配对让人联想起catalan数,顺便转载一篇归纳的还不错的文章

    转载请注明来自souldak,微博:@evagle 怎么样才是合法的组合? 只要每一时刻保证左括号的数目>=右括号的数目即可. 直接递归就行,每次递归加一个括号,左括号只要还有就能加,右括号要保 ...

  2. (转载)Catalan数——卡特兰数

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

  3. 转载 - Catalan数(卡特兰数)

    出处:http://blog.sina.com.cn/s/blog_6aefe4250101asv5.html 什么是Catalan数 说到Catalan数,就不得不提及Catalan序列,Catal ...

  4. 从头说catalan数及笔试面试里那些相关的问题 (转)

    作者:寒小阳 时间:2013年9月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/11938973. 声明:版权所有,转载请注明出处,谢谢 ...

  5. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  6. Catalan数 && 【NOIP2003】出栈序列统计

    令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) ...

  7. Catalan数

    先看2个问题: 问题一: n个元素进栈(栈无穷大),进栈顺序为1,2,3,....n,那么有多少种出栈顺序? 先从简单的入手:n=1,当然只有1种:n=2,可以是1,2  也可以是2,1:那么有2种: ...

  8. catalan数及笔试面试里那些相关的问题(转)

    一.catalan数由来和性质 1)由来 catalan数(卡塔兰数)取自组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡塔兰数的一般项 ...

  9. catalan 数——卡特兰数(转)

    Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...

随机推荐

  1. TCP协议三次握手、四次断开 过程分析

    建立TCP连接的过程需要进行三次信息交换,通常称为“三次握手”,示意图如下:

  2. win7 telnet命令无法使用

    很多做网络测试的同学发现安装win7后,无法使用telnet命令了,提示“telnet不是内部或外部命令,也不是可运行的程序”,但是很需要在win7中使用telnet工具,怎么办? 首先你要要确认你的 ...

  3. setjmp和longjmp的使用

    问题描述:          setjmp和longjmp的使用 问题解决:       setjmp和longjmp是C语言独有的,只有将它们结合起来使用,才能达到程序控制流有效转移的目的,按照程序 ...

  4. 【BZOJ】【3143】【HNOI2013】游走

    数学期望/高斯消元/贪心 啊……用贪心的思路明显是要把经过次数期望越大的边的权值定的越小,那么接下来的任务就是求每条边的期望经过次数. 拆边为点?nonono,连接x,y两点的边的期望经过次数明显是 ...

  5. 【HDOJ】【3037】Saving Beans

    排列组合 啊……这题是要求c(n-1,0)+c(n,1)+c(n+1,2)+......+c(n+m-1,m) 这个玩意……其实就等于c(n+m,m) 好吧然后就是模P……Lucas大法好= = 我S ...

  6. 翻译:用Javascript的Function构造器伪造上下文 by Ben Nadel

    在我的jQuery模板标记语言(JTML)项目中,我需要一种方式将JTML模板编译到JS函数,这样它们就可以如期地在任何时候转换成新的HTML标记.但这是一个严峻的问题,因为JTML代码涉及非作用域( ...

  7. C# 静态类

    静态类是不能实例化的,我们直接使用它的属性与方法,静态类最大的特点就是共享. 探究 public static class StaticTestClass { ; public static void ...

  8. JavaSE GUI显示列表 JTable的刷新 重新加载新的数据

    JTable在显示所有数据之后,假如需要搜索某个名字,则会获取新的列表数据. 假设datas是JTable的数据,定义为: private Vector<Vector> datas = n ...

  9. 安装ubuntu vi编辑无法正常使用的时候 如方向键变成ABCD

    http://blog.sina.com.cn/s/blog_7e3f6e8f0100vkon.html 在使用ubuntu的时候,发现vi编辑模式下退格键backspace和上下左右光标移动键不能用 ...

  10. Highcharts中初始化最大值与最小值的柱状图

    <!doctype html> <html lang="en"> <head> <script type="text/javas ...