#返回上一级

@Author: 张海拔

@Update: 2014-01-14

@Link: http://www.cnblogs.com/zhanghaiba/p/3520089.html

 /*
*Author: ZhangHaiba
*Date: 2014-1-15
*File: inverse_number.c
*
*this demo shows two method solving inverse number problem
*/ #include <stdio.h>
#define N 512
#define INF 0x7fffffff; //value of sentinel
int array[N];
int left_tmp[N/+];
int right_tmp[N/+]; //public
int inverse_number_cnt(int *, int);
int inverse_number_cnt2(int *, int);
void merge_sort(int *, int, int, int *);
void set_array(int *, int);
void show_array(int *, int); int main(void)
{
int n; scanf("%d", &n);
set_array(array, n);
int ans;
ans = inverse_number_cnt(array, n);
printf("%d\n", ans);
ans = inverse_number_cnt2(array, n);
printf("%d\n", ans);
return ;
} int inverse_number_cnt(int *a, int n)
{
int i, j, cnt = ; for (i = ; i < n-; ++i)
for (j = i+; j < n; ++j)
if (a[i] > a[j])
++cnt;
return cnt;
} //modify merge_sort:
//add variable cnt
//add code "*cnt = left_len - i;"
void merge_sort(int *a, int l, int r, int *cnt)
{
if (l >= r) return;
else {
int m = l + (r-l)/;
merge_sort(a, l, m, cnt);
merge_sort(a, m+, r, cnt);
int left_len = m-l+, right_len = r-m, i, j = l;
for (i = ; i < left_len; ++i, ++j)
left_tmp[i] = a[j];
left_tmp[i] = INF;
for (i = ; i < right_len; ++i, ++j)
right_tmp[i] = a[j];
right_tmp[i] = INF;
for (i = j = ; l <= r; ++l) {
if (left_tmp[i] <= right_tmp[j])
a[l] = left_tmp[i++];
else {
a[l] = right_tmp[j++];
*cnt += left_len - i;
}
}
}
} int inverse_number_cnt2(int *a, int n)
{
int l = , r = n-, cnt = ; merge_sort(a, l, r, &cnt);
return cnt;
} void set_array(int *a, int n)
{
int i; for (i = ; i < n; ++i)
scanf("%d", a+i);
} void show_array(int *a, int n)
{
int i; for (i = ; i < n; ++i)
printf(i == n- ? "%d\n" : "%d ", a[i]);
}

逆序对的定义:序列A中,当位置i < j,而对应值a[i] > a[j],则称(i, j)构成序列A的一个逆序对。

解法一中,按照定义,通过两个for循环即可求出逆序对数。

即以第i个的元素为起点,j从i+1开始到n-1结束按定义进行验证,从而统计逆序对的个数,显然i的范围是[0, n-2]。

显然解法一的时间复杂度是O(n^2)。

解法二的所用函数几乎就是调用了一个纯粹的归并排序,目的通过计数器cnt的地址来修改cnt,做完归并排序后返回。

这个解法求逆序对数的原理是:对于某一次的归并(有序表的合并),类似二叉树的后序遍历,归并时当右子数组某个元素k进入根数组时,此时左子数组中,下标为i的元素以及它后面的所有元素都与k构成逆序对(左子数组的下标均<左子数组任何一个元素的下标,而k能进入根数组则说明它的值比左子数组剩下的所有元素都小,因此k的下标与上述元素的下标,均构成逆序对),所以有逆序对数要增加left_len - i,即:*cnt += left_len - i。

#返回上一级

怎样求逆序对数(Inverse Number)?的更多相关文章

  1. hdu 4911 求逆序对数+树状数组

    http://acm.hdu.edu.cn/showproblem.php?pid=4911 给定一个序列,有k次机会交换相邻两个位置的数,问说最后序列的逆序对数最少为多少. 实际上每交换一次能且只能 ...

  2. 归并排序(归并排序求逆序对数)--16--归并排序--Leetcode面试题51.数组中的逆序对

    面试题51. 数组中的逆序对 在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.输入一个数组,求出这个数组中的逆序对的总数. 示例 1: 输入: [7,5,6,4] 输出 ...

  3. 求逆序对数总结 & 归并排序

    用归并排序方式 最原始的方法的复杂度是O(n^2). 使用归并排序的方式,可以把复杂度降低到O(nlgn). 设A[1..n]是一个包含N个非负整数的数组.如果在i〈 j的情况下,有A〉A[j],则( ...

  4. poj 2299 树状数组求逆序对数+离散化

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 54883   Accepted: 20184 ...

  5. codeforces 459D D. Pashmak and Parmida's problem(离散化+线段树或树状数组求逆序对)

    题目链接: D. Pashmak and Parmida's problem time limit per test 3 seconds memory limit per test 256 megab ...

  6. codeforces 540E 离散化技巧+线段树/树状数组求逆序对

    传送门:https://codeforces.com/contest/540/problem/E 题意: 有一段无限长的序列,有n次交换,每次将u位置的元素和v位置的元素交换,问n次交换后这个序列的逆 ...

  7. 牛客练习赛33 D tokitsukaze and Inverse Number (树状数组求逆序对,结论)

    链接:https://ac.nowcoder.com/acm/contest/308/D 来源:牛客网 tokitsukaze and Inverse Number 时间限制:C/C++ 1秒,其他语 ...

  8. 归并求逆序数(逆序对数) && 线段树求逆序数

    Brainman Time Limit: 1000 MS Memory Limit: 30000 KB 64-bit integer IO format: %I64d , %I64u   Java c ...

  9. POJ2299Ultra-QuickSort(归并排序 + 树状数组求逆序对)

    树状数组求逆序对   转载http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 转载: 树状数组,具体的说是 离散化+树 ...

随机推荐

  1. opencv3.3 安装环境教程以及实现个图片读取功能

    一.opencv3.3安装环境 1. 首先要安装这个opencv3.3,我们必须要安装一个python (IDLE:集成开发环境),我自己安装了IDLE3.6和pycharm2017,这些软件都可以去 ...

  2. 学习笔记|JSP教程|菜鸟教程

    学习笔记|JSP教程|菜鸟教程 ------------------------------------------------------------------------------------ ...

  3. python list 嵌套 dict 按照字典中的单个key进行单级排序 或 按照多个键进行多级排序

    student = [{"no": 1,"score": 90},{"no": 2,"score": 90},{&quo ...

  4. centos networkmanager 和 network配置冲突

    1.由于NetworkManager与 network 有冲突,所以要把NetworkManager关掉

  5. Working with Metal—Overview

    看完这个 WWDC 之后的总结. Metal 可以在单位时间内提供 10 倍的 draw call 调用. Background About Draw Call 每一次 draw call 调用都必须 ...

  6. PHP错误——Allowed memory size of 134217728 bytes exhausted (tried to allocate 32 bytes)

    解释是可用内存已耗尽,这关系到PHP的memory_limit的设置问题. 这里有两种方法解决 1.修改php.ini memory_limit = 128 打开终端输入下列bash命令 cd /pr ...

  7. python-requests库的使用之爬取贴吧内容并保存在本地

    以面向对象的程序设计方式,编写爬虫代码爬去‘李毅吧’所有页面的内容,也可以通过改变对象的参数来爬取其它贴吧页面的内容. 所用到的库为:requests 涉及知识点:python面向对象编程,字符串操作 ...

  8. leetcode-350-Intersection of Two Arrays II(求两个数组的交集)

    题目描述: Given two arrays, write a function to compute their intersection. Example:Given nums1 = [1, 2, ...

  9. 架构师养成记--29.redis开篇

    主要有从下几点讲解 NOSQL(Redis) 简介.redis安装与部署 Redis基础事件类型详解 Redis高级命令 Redis与java的使用 Redis集群搭建 Redis集群与spring的 ...

  10. Learn to See in the Dark(论文阅读笔记)

    最近做项目看了一篇论文<Learn to See in the Dark>下面是一些论文笔记 概括: 这篇论文主要介绍的是在低光照的环境下用两个标准的FCN网络,通过控制变量法来对比不同的 ...