F - Roads in Berland

Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d
& %I64u

Description

There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Each road has its own length
— an integer number from 1 to 1000. It is known that from each city it is possible to get to any other city by existing roads. Also for each pair of cities it is known the shortest distance between them. Berland Government plans to build k new
roads. For each of the planned road it is known its length, and what cities it will connect. To control the correctness of the construction of new roads, after the opening of another road Berland government wants to check the sum of the shortest distances
between all pairs of cities. Help them — for a given matrix of shortest distances on the old roads and plans of all new roads, find out how the sum of the shortest distances between all pairs of cities changes after construction of each road.

Input

The first line contains integer n (2 ≤ n ≤ 300) — amount of cities in Berland. Then there follow n lines
with n integer numbers each — the matrix of shortest distances. j-th integer in the i-th
row — di, j, the shortest distance between cities i and j.
It is guaranteed thatdi, i = 0, di, j = dj, i,
and a given matrix is a matrix of shortest distances for some set of two-way roads with integer lengths from 1 to 1000, such that from each city it is possible to get to any other city using these roads.

Next line contains integer k (1 ≤ k ≤ 300) — amount of planned roads. Following k lines
contain the description of the planned roads. Each road is described by three space-separated integers aibici (1 ≤ ai, bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 1000)
— ai and bi — pair of cities, which the road connects, ci —
the length of the road. It can be several roads between a pair of cities, but no road connects the city with itself.

Output

Output k space-separated integers qi (1 ≤ i ≤ k). qi should
be equal to the sum of shortest distances between all pairs of cities after the construction of roads with indexes from 1 to i. Roads are numbered from 1 in the input order. Each pair of cities
should be taken into account in the sum exactly once, i. e. we count unordered pairs.

Sample Input

Input
2
0 5
5 0
1
1 2 3
Output
3 
Input
3
0 4 5
4 0 9
5 9 0
2
2 3 8
1 2 1
Output

17 12

这道题目对每次增加的路跑一下Floyed就好了,输出格式好像没有限制

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h> using namespace std;
int a[305][305];
int k;
int n;
int x,y,z;
int main()
{
scanf("%d",&n);
int sum=0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{scanf("%d",&a[i][j]);sum+=a[i][j];}
sum/=2;
scanf("%d",&k);
long long int num;
for(int i=1;i<=k;i++)
{
scanf("%d%d%d",&x,&y,&z);
num=0;
if(a[x][y]>z)
{
// sum-=(a[x][y]-z);
a[x][y]=z;
a[y][x]=z;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{ if(a[i][j]>(a[i][x]+a[y][j]+a[x][y]))
{ //num=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
//sum-=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
a[i][j]=(a[i][x]+a[y][j]+a[x][y]);
//a[j][i]=(a[i][x]+a[y][j]+a[x][y]); }
if(a[i][j]>(a[i][y]+a[x][j]+a[x][y]))
{
//num=(a[i][j]-a[i][x]-a[y][j]-a[x][y]);
//sum-=(a[i][j]-a[i][y]-a[x][j]-a[x][y]);
a[i][j]=(a[i][y]+a[x][j]+a[x][y]);
//a[j][i]=(a[i][y]+a[x][j]+a[x][y]); }
num+=a[i][j]; }
}
printf("%lld ",num/2); }
printf("\n");
return 0;
}

CodeForces 25C(Floyed 最短路)的更多相关文章

  1. codeforces DIV2 D 最短路

    http://codeforces.com/contest/716/problem/D 题目大意:给你一些边,有权值,权值为0的表示目前该边不存在,但是可以把0修改成另外一个权值.现在,我们重新建路, ...

  2. [luogu2047 NOI2007] 社交网络 (floyed最短路)

    传送门 输入输出样例 输入样例#1: 4 4 1 2 1 2 3 1 3 4 1 4 1 1 输出样例#1: 1.000 1.000 1.000 1.000 题解 在进行floyed的过程中,顺便更新 ...

  3. Dynamic Shortest Path CodeForces - 843D (动态最短路)

    大意: n结点有向有权图, m个操作, 增加若干边的权重或询问源点为1的单源最短路. 本题一个特殊点在于每次只增加边权, 并且边权增加值很小, 询问量也很小. 我们可以用johnson的思想, 转化为 ...

  4. 【Codeforces 25C】Roads in Berland

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 用floyd思想. 求出来这条新加的边影响到的点对即可. 然后尝试更新点对之间的最短路就好. 更新之后把差值从答案里面减掉. [代码] #in ...

  5. Day4 - M - Roads in Berland CodeForces - 25C

    There are n cities numbered from 1 to n in Berland. Some of them are connected by two-way roads. Eac ...

  6. World Tour CodeForces - 667D (bfs最短路)

    大意: 有向图, 求找4个不同的点ABCD, 使得d(A,B)+d(D,C)+d(C,A)最大

  7. Bakery CodeForces - 707B (最短路的思路题)

    Masha wants to open her own bakery and bake muffins in one of the n cities numbered from 1 to n. The ...

  8. CodeForces 689B【最短路】

    题意: 给你一副图,给出的点两两之间的距离是abs(pos1-pos2),然后给你n个数是表示该pos到x的距离是1. 思路: 直接建边,跑spfa就好了.虽然说似乎题意说边很多,其实只要建一下相邻的 ...

  9. Make It One CodeForces - 1043F (数论,最短路,好题)

    大意: 给定序列$a$, 求最小子集, 使得gcd为1. 对于数$x$, 素因子多少次幂是无关紧要的, 这样就可以用一个二进制数来表示. $x$取$gcd$后的二进制状态最多$2^7$, 可以暴力枚举 ...

随机推荐

  1. mpeg压缩输入格式---打包模式和平面模式

    版本 v1.0,存在内存问题在 void v4l2_process_image(struct buffer buf)中对 v4l2 采集来的一帧进行处理,存在 struct buffer buf 中b ...

  2. 初涉RxAndroid结合Glide实现多图片载入操作

    转载请注明出处:王亟亟的大牛之路 本来周末就想发了然后各种拖拉就没有然后了,那么就今天早上写吧,废话不多開始正题 什么是RxJava或者RxAndroid我就不多废话了,理论知识一大堆人给我们做好了. ...

  3. 在Terminal中的光标的使用技巧

    如何简单操作? 在 Terminal(终端) 中,有许多操作技巧,这里就介绍几个简单的. 光标 up(方向键上) 可以调出输入历史执行记录,快速执行命令 down(方向键下) 配合 up 选择历史执行 ...

  4. php中获取网站访客来源的关键词方法

    php中获取网站访客来源的关键词方法,收集了 <?php class keyword{ public function getKeyword($referer){ if(strpos($refe ...

  5. TTreeView TTreeNodes TTreeNode

    TTreeView 填写 TTreeView 的内容一般是这样开始的(下图), 不过我觉得最好习惯用动态建立. 打个比方: 譬如 TreeView 是一个军营的"营部"! 这里会有 ...

  6. 超全面的JavaWeb笔记day03<JS对象&函数>

    1.js的String对象(****) 2.js的Array对象 (****) 3.js的Date对象 (****) 获取当前的月 0-11,想要得到准确的月 +1 获取星期时候,星期日是 0 4.j ...

  7. 如何根据select选择的值反查option的属性

    有时候select已经被选中了,想知道这个选中option的属性又该如何处理呢? 我这里提供一种粗暴的方式 <!DOCTYPE HTML> <html lang="en-U ...

  8. Tomcat连接参数的优化,主要是针对吞吐量做优化

    Tomcat连接参数的优化,主要是针对吞吐量做优化: 修改conf/server.xml文件,把原来 <Connector port="8080" protocol=&quo ...

  9. org.apache.activemq.transport.InactivityIOException: Cannot send, channel has already failed

    项目是使用activeMQ 发布订阅的模式,在本地测试正常,但是 放到服务器上出现这个错误: org.apache.activemq.transport.InactivityIOException: ...

  10. 复习前面一个月的学习C#感觉道路好艰难啊

    今天是复习前面学习的内容,感觉这一个月来真的学习了很多,但是掌握的不好,好多都是在老师讲完课后做起来练习感觉这知识用起来蛮轻松地,但是经过昨天和今天的复习发现好多还是给忘记啦,甚是失落啊,刚开始就知道 ...