struct A
{
int a;
char b;
short c;
}; struct B
{
char a;
int b;
short c;
}; #pragma pack(2)
struct C
{
char a;
int b;
short c;
}; #pragma pack(1)
struct D
{
int a;
char b;
short c;
}; int _tmain(int argc, _TCHAR* argv[])
{ cout << sizeof(A) << " "<< sizeof B << " "<< sizeof C << " "<< sizeof D <<endl;
return ;
}
运行结果如下:
8     12     8       7

理论上来说,结构体A与B的大小应该都是一样的,造成这种原因的就是字节对齐引起来的。

2.为什么要字节对齐  

  为什么呢?简单点说:为了提高存取效率。字节是内存空间分配的最小单位, 在程序中,我们定义的变量可以放在任何位置。其实不同架构 的CPU在访问特定类型变量时是有规律的,比如有的CPU访问int型变量时,会从偶数地址开始读取的,int类型占用4个字节(windows平台)。 0X0000,0X0004,0X0008.....这样只需要读一次就可以读出Int类型变量的值。相反地,则需要读取二次,再把高低字节相拼才能得到 int类型的值,这样子看的话,存取效率当然提高了。  通常写程序的时候,不需要考虑这些情况,编译都会为我们考虑这些情况,除非针对那些特别架构的 CPU编程的时候的则需要考虑 。当然用户也可以手工控制对齐方式。

3.编译器对字节对齐的一些规则

我从下面三条说明了编译器对字节处理的一些原则。当然除了一些特殊的编译器在处理字节对齐的方式也不一样, 这些情况我未碰到过,就不作说明了。

  a. 关于数据类型自身的对齐值,不同类型会按不同的字节来对齐。
类型 对齐值(字节)
char 1
short 2
int 4
float 4
double 8
      b. 类、结构体的自身对齐字节值。对于结构体类型与类对象的对齐原则:使用成员当中最大的对齐字节来对齐。比如在Struct A中,int a的对齐字节为4,比char,short都大,所以A的对齐字节为4
     c. 指定对齐字节值。意思是指使用了宏 #pragma pack(n)来指定的对齐值

d. 类、结构及成员的有效对齐字节值。有效对齐值=min(类/结构体/成员的自身对齐字节值,指定对齐字节值)。   

  有效对齐值决定了数据的存放方 式,sizeof 运算符就是根据有效对齐值来计算成员大小的。简单来说, 有效对齐其实就是要求数据成员存放的地址值能被有效对齐值整除,即:地址值%有效对齐值=0

4. 结合编译器分析示例

根据上面的原则,分析Struct A的size。结构体的成员内存分配是按照定义的顺序来分析的。
struct A
{    
   int a;    
   char b;    
   short c;
}  
为了简单起见, 我假设Struct A存取的起始地址为 0x0000 在没有指定对齐值的情况下,分析步骤:  
   step : 根据第二条,首先为结构体选择对齐值:选择成员中最大的对齐值,即int a,对齐值为4  
step : 再根据第四条原则,决定有效对齐值:即然没有手工指定对齐值,则使用默认的值:(windows 32平台)   
step : int a 的有效地址值=min(,),(因为0x0000%=),这样a的地址就是从 0X0000~0x0003    
step : char b 的有效对齐值=min(,),地址依次从0x0004 (因为Ox0004%=)开始,分配一个字节,地址段分配情况就是:0x0000~0x0004    
step : short c 的有效对齐值=min(,),理论上说,分配的地址应该是连续的(从0x0005~0x00006),但是由于要求考虑到对齐的情况,所求要求地址段 偏移,这样就从0x0006(Offset+,因为0x0006%=)开始,分配2个字节的地址0x0006~0x0007.
目前为止,地址段的分配情况就是:0x0000~0x0007这样sizeof(A)的大小=0x0000~0x0007共8个字节大小,同时,%=0保证了Struct A的地址段与4成偶数倍。

接下来分析Struct B的大小,同样假设Struct B的起始地址为0x0000,分析步骤如下:

struct B
{
    char a;
    int b;
    short c;
}
    step : 确实结构体B对齐值:选择成员中最大的对齐值,即int a,对齐值为4
step : 确定手工指定对齐值,使用默认的值:(windows , VC6.0平台)   
step : char a 的有效地址值=min(,),a的地址就是 0X0000(因为0x0000%=) 
step : int b 的有效对齐值=min(,),地址依次从0x0004~0x0007 (因为Ox0004%=)开始,分配4个字节,目前j地址段分配情况就是:0x0000~0x0007    
step : short c 的有效对齐值=min(,),c从0x0008~0x0009(因为0x0008%=)开始,偏移2个字节的地址0x0006~0x0007.
至止,地址段的分配情况就是:0x0000~0x0009共10个字节,但是Struct B的对齐值为4,这就要求地址地段再偏移2个字节,这样就是从0x0000~0x000B共12(因为12%=)个字节大小。这样,sizeof(B)=.

再来使用Pragma手工更改了字节对齐值的情况,先看看Struct C的定义:

#pragma pack(2)
struct C
{
    char a;
    int b;
    short c;
};

在代码中,手工指定了对齐值为2个字节,分析步骤如下:

    step : 确定结构体C对齐值:选择成员中最大的对齐值,即int a,对齐值为4    
step : 确定手工指定对齐值,使用手工指定的值:
step : char a 的有效地址值=min(,),(因为0x0000%=),这样a的地址就是0x0000 
step : int b 的有效对齐值=min(,),地址依次从0x0002~0x0005 (因为Ox0002%=)开始,分配4个字节,目前地址段分配情况就是:0x0000~0x0005    
step : short c 的有效对齐值=min(,),由于要求考虑到对齐的情况,从0x0006(因为0x0006%=)开始,分配2个字节的地址0x0006~0x0007
目前为止,地址段的分配情况就是:0x0000~0x0007共8个字节,同时也保证了Struct C的对齐情况(2字节对齐,pragma()),sizeof(C)=.

请注意这种情况与Struct B的情况有区别,B的sizeof大小为12个字节,C的sizeof大小为8个字节。

  最后分析#pragma pack(1)这种情况,这种情况非常简单,对齐值为1,因为1可以被任何数据整除,所以Struct D的成员变量存取顺序是连续的,这样就好办了,sizeof(D)=sizeof(int)+sizeof(char)+sizeof(short)=4+1+2=7 (比如从0x0000~0x0006)

总结

  在考虑字节对齐时要细心,搞清楚几个重要的概念,如类型自身对齐值,手工对齐值以及有效对齐值,有效对齐值决定了最后的存取方式,有效对齐值等于类型自身对齐值与手工对齐值中较小的一个。理解了这一点,对sizeof运算符对类型或都结构的运算也彻底明白了。

以下测试实例 -------------------------------------------------------------------------------------------------

#include <iostream>
using namespace std;
// 没有指定对齐字节,则使用 结构体或类 中字节最大的类型字节值(前提是不超过 8 字节,当超过8字节,则采用4字节对齐)
struct A // 8 ->(8%4 == 0)-> 8
{
int a; //
char b;
short c;
}; struct B // 10 ->(10%4 != 0)-> 12
{
char a;
int b; //
short c;
}; struct C // 12 ->(12%8 != 0)-> 16
{
double b; //
char a;
short c;
}; struct D // 18 ->(18%8 != 0)-> 24
{
char a;
double b; //
short c;
}; struct E // 20 ->(20%4 == 0)-> 20
{
char a;
long double b; // (12 > 8) -> 采用 4 字节对齐, 和 #pragma pack(4) 效果一样
short c;
}; struct F // 16 ->(16%4 == 0)-> 16
{
long double b; //
char a;
short c;
}; #pragma pack(4) // 和 struct E 效果一样
struct G // 20 ->(20%4 == 0)-> 20
{
char a;
long double b; //
short c;
}; #pragma pack(2) // 会影响后续类型的对齐有效值,直到重新设置
struct H // 8 ->(8%2 == 0)-> 8
{
char a;
int b;
short c;
}; //#pragma pack(2)
struct I // 12 ->(12%2 == 0)-> 12
{
char a;
double b; //
short c;
}; #pragma pack(1)
struct J // 7 ->(7%1 == 0)-> 7
{
int a;
char b;
short c;
}; int main()
{
long double bb;
cout << sizeof(bb) << endl; // 12
// 输出结果为: 8 12 16 24 20 16 20 8 12 7
    cout << sizeof(A) << "   "<< sizeof(B) << "   "<< sizeof(C) << "   "<< sizeof(D) << "   "<< sizeof(E) << "   "<< sizeof(F) << "   "<< sizeof(G) << "   "<< sizeof(H) << "   "<< sizeof(I) << "   "<< sizeof(J) << endl;
return ;
}

C++中的字节对齐分析的更多相关文章

  1. C语言中的字节对齐以及其相关处理

    首先,我们来了解下一些基本原理: 一.什么是字节对齐一个基本类型的变量在内存中占用n个字节,则该变量的起始地址必须能够被n整除,即: 存放起始地址 % n = 0,那么,就成该变量是字节对齐的;对于结 ...

  2. C语言字节对齐分析

    1.前言 什么是字节对齐呢?现代计算机中的内存空间都是按字节(byte)划分的,从理论上讲似乎任何类型的变量的访问都可以从任何地址开始,但是实际情况是在访问特定变量的时候经常需要在特定的内存地址进行访 ...

  3. ACE的CDR中的字节对齐问题

    大家应该都知道计算机中间都有字节对齐问题.CPU访问内存的时候,如果从特定的地址开始访问一般可以加快速度,比如在32位机器上,如果一个32位的整数被放在能被32模除等于0的地址上,只需要访问一次,而如 ...

  4. C++中的字节对齐

    本博客(http://blog.csdn.net/livelylittlefish)贴出作者(三二一.小鱼)相关研究.学习内容所做的笔记,欢迎广大朋友指正! 字节对齐 1. 基本概念字节对齐:计算机存 ...

  5. C语言中的字节对齐

    下面这个篇博客讲解很好 http://blog.csdn.net/meegomeego/article/details/9393783 总的来看分三类: 1. 不加 #pragma pack(n)伪指 ...

  6. 关于sizeof与#pragma pack 以及网络上关于字节对齐的一点感想

    工作中面试中对于字节对齐基本上是必考一个知识点,而很多面试是网络上上原题.基本上背一背就可以写正确,而关于4字节对齐我相信很多人也只是一个基本地了解,对于一些题目就感觉有问题,而且很多blog后面仍然 ...

  7. c++内存中字节对齐问题详解

    一.什么是字节对齐,为什么要对齐?    现代计算机中内存空间都是按照byte划分的,从理论上讲似乎对任何类型的变量的访问可以从任何地址开始,但实际情况是在访问特定类型变量的时候经常在特 定的内存地址 ...

  8. stm32中使用#pragma pack(非常有用的字节对齐用法说明)

    #pragma pack(4)   //按4字节对齐,但实际上由于结构体中单个成员的最大占用字节数为2字节,因此实际还是按2字节对齐 typedef struct { char buf[3];//bu ...

  9. 关于C语言中结构体中的结构体成员导致的字节对齐问题

    关于结构体的字节对齐是什么,就不赘述,再此附上一篇文章,介绍字节对齐:http://www.linuxsong.org/2010/09/c-byte-alignment/ 这里的结构体字节对齐的数据类 ...

随机推荐

  1. 【WPF】给UserControl引入多个资源

    问题:为了方便资源的复用,我们通常会把资源单独抽取为一个资源文件,供其他文件引用.而用户自定义控件UserControl中经常需要引入多个资源文件.而在XAML中由于标签UserControl.Res ...

  2. CentOS更新163 yum源

    这个脚本也没啥多大意义,只是为了自己练习着写一下bash ======================================================================= ...

  3. Android—— 线程 thread 两种实现方法!(转)

    原文地址:http://blog.csdn.net/boyupeng/article/details/6208072 这篇文章中有三点需要提前说明一下, 一: 在android中有两种实现线程thre ...

  4. scala实现彩票算法

    scala实现彩票算法 (1)具体实现代码如下: package hw1 import scala.util.control._ /** * @author BIGDATA */ object Cp ...

  5. linux 使用NSF 映射远程磁盘目录

    假设源目录在192.168.1.1机器上,目录为/data 客户端集群在192.168.1.2, 需要将192.168.1.1机器上的/data目录到本地的/data目录 1.在两台机器上安装nsf ...

  6. GPU硬件加速原理 /转

    现代浏览器大都可以利用GPU来加速页面渲染.每个人都痴迷于60桢每秒的顺滑动画.在GPU的众多特性之中,它可以存储一定数量的纹理(一个矩形的像素点集合)并且高效地操作这些纹理(比如进行特定的移动.缩放 ...

  7. rails中render 和 redirect_to的区别, each只能用在数组中,如果只有一个或者零个项,用each方法会报错undefined method `each' for #...

    在render中,即使有:action,那么也仅仅是取对应的view中的模板(html.erb)而已,所以这里即使浏览器中的url是/orders/xcreate,但是显示的界面是/app/views ...

  8. 数据库之“on”“where”区别

    数据库在通过连接两张或者多张表返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户 在使用inner join(内连接)没有区别,但是 在使用left jion时,on和where条件的 ...

  9. C++ 数据封装

    C++ 数据封装所有的 C++ 程序都有以下两个基本要素: 程序语句(代码):这是程序中执行动作的部分,它们被称为函数.程序数据:数据是程序的信息,会受到程序函数的影响.封装是面向对象编程中的把数据和 ...

  10. (转)c++多态实现的机制

    原文地址:http://blog.csdn.net/zyq0335/article/details/7657465 1 什么是多态?多态性可以简单的概括为“1个接口,多种方法”,在程序运行的过程中才决 ...