uva11324 有向图的强连通分量+记忆化dp
给一张有向图G, 求一个结点数最大的结点集,使得该结点集中任意两个结点u和v满足,要么u可以到达v, 要么v可以到达u(u和v相互可达也可以)。
因为整张图可能存在环路,所以不好使用dp直接做,先采用有向图的强连通分量,进行缩点,然后得到一个有向无环图(DAG) 在采用记忆话dp 去做即可
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <vector>
#include <stack>
using namespace std;
const int maxn = +;
vector<int>G[maxn];
int pre[maxn],lowlink[maxn],sccno[maxn],dfs_clock,scc_cnt;
stack<int> S;
void dfs(int u){
pre[u] = lowlink[u]=++dfs_clock;
S.push(u);
for(int i=; i<G[u].size() ; ++i){
int v = G[u][i];
if(!pre[v]){
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}else if(!sccno[v]){
lowlink[u] = min(lowlink[u],pre[v]);
}
}
if(lowlink[u]==pre[u]){
scc_cnt++;
for(;;){
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x==u)break;
}
}
}
void find_scc(int n){
dfs_clock =scc_cnt =;
memset(sccno,,sizeof(sccno));
memset(pre, , sizeof(pre));
while(!S.empty())S.pop();
for(int i=; i<n; ++i)
if(!pre[i]) dfs(i);
}
int value[maxn],dp[maxn];
vector<int> E[maxn];
int dff(int u){
if(dp[u]!=-) return dp[u];
dp[u]=;
for(int i=; i<E[u].size(); ++i){
int v = E[u][i];
dp[u]=max(dff(v),dp[u]);
}
dp[u]+=value[u];
return dp[u];
}
int main()
{
int cas;
scanf("%d",&cas);
for(int cc =; cc<=cas; ++cc){ int n,m;
scanf("%d%d",&n,&m);
for(int i=; i<=n; ++i)
G[i].clear(),E[i].clear();
for(int i=; i<=m; ++i){
int u,v;
scanf("%d%d",&u,&v);
u--; v--;
G[u].push_back(v);
}
find_scc(n);
memset(value,,sizeof(value));
for(int u=; u<n; ++u){
value[sccno[u]]++;
for(int j=; j<G[u].size(); ++j){
int v=G[u][j];
if(sccno[u]!=sccno[v]){
E[sccno[u]].push_back(sccno[v]);
}
}
}
memset(dp , - , sizeof(dp));
int ans=;
for(int i=; i <= scc_cnt; ++i){
if(dp[i]==-)
dff(i);
ans=max(ans,dp[i]);
}
printf("%d\n",ans);
}
return ;
}
uva11324 有向图的强连通分量+记忆化dp的更多相关文章
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP
BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...
- Google Code Jam 2009, Round 1C C. Bribe the Prisoners (记忆化dp)
Problem In a kingdom there are prison cells (numbered 1 to P) built to form a straight line segment. ...
- UVA247- Calling Circles(有向图的强连通分量)
题目链接 题意: 给定一张有向图.找出全部强连通分量,并输出. 思路:有向图的强连通分量用Tarjan算法,然后用map映射,便于输出,注意输出格式. 代码: #include <iostrea ...
- 『Tarjan算法 有向图的强连通分量』
有向图的强连通分量 定义:在有向图\(G\)中,如果两个顶点\(v_i,v_j\)间\((v_i>v_j)\)有一条从\(v_i\)到\(v_j\)的有向路径,同时还有一条从\(v_j\)到\( ...
- 图->连通性->有向图的强连通分量
文字描述 有向图强连通分量的定义:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly co ...
- DFS的运用(二分图判定、无向图的割顶和桥,双连通分量,有向图的强连通分量)
一.dfs框架: vector<int>G[maxn]; //存图 int vis[maxn]; //节点访问标记 void dfs(int u) { vis[u] = ; PREVISI ...
- 图论-求有向图的强连通分量(Kosaraju算法)
求有向图的强连通分量 Kosaraju算法可以求出有向图中的强连通分量个数,并且对分属于不同强连通分量的点进行标记. (1) 第一次对图G进行DFS遍历,并在遍历过程中,记录每一个点的退出顺序 ...
- cf835(预处理 + 记忆化dp)
题目链接: http://codeforces.com/contest/835/problem/D 题意: 定义 k 度回文串为左半部分和右半部分为 k - 1 度的回文串 . 给出一个字符串 s, ...
随机推荐
- ASP代码审计学习笔记-1.SQL注入
ASP注入漏洞 一.SQL注入的原因 按照参数形式:数字型/字符型/搜索型 1.数字型sql查询 sql注入原因: ID=49 这类注入的参数是数字型,SQL语句原貌大致如下: id=request. ...
- Unity3d 手机屏幕自动适配
我提到手机自动适配的一个方法中:postion和Scale,“比例”概念适配手机.原始资源是480*800 经过实际项目考验,个人感觉: 1,UICamera是自动适配分辨率,UI上也是拉伸.放大UI ...
- lua知识点整理
1. lua全局环境和局部环境 local cf = loadstring(" local i=0 i=i+1 print(i) ") --从后面两个输出我们可以看出,生成的函数的 ...
- 如何使用微信小程序制作banner轮播图?
在前端工程师的工作中,banner是必不可少的,那缺少了DOM的小程序是如何实现banner图的呢?如同其他的框架封装了不同的banner图的方法,小程序也封装了banner的方法,来让我一一道来: ...
- JS 构造图片Image对象
var image=new Image(); image.src=""; console.log(image.width);
- LINUX IPTABLES 防火墙配置
0.iptables(ACL)的匹配原则: 与cisco等一致,从上到下依次匹配. 1.iptables的基本用法:. (1)命令格式 iptables [–ttable] command [mat ...
- 【BZOJ1854】[Scoi2010]游戏 二分图最大匹配
[BZOJ1854][Scoi2010]游戏 Description lxhgww最近迷上了一款游戏,在游戏里,他拥有很多的装备,每种装备都有2个属性,这些属性的值用[1,10000]之间的数表示.当 ...
- 170516、ActiveMQ 的安装与使用(单节点)
ActiveMQ 的安装与使用(单节点)IP: 192.168.4.101环 境: CentOS 6.6 . JDK71. 安装 JDK 并配置环境变量(略)JAVA_HOME=/usr/local/ ...
- paramiko与ssh
一.paramiko模块的安装 paramiko模块依赖PyCrypto模块,而PyCrypto需要GCC库编译,不过一般发行版的源里带有该模块.这里以centos6为例,直接借助以下命令可以直接完成 ...
- (2.4)DDL增强功能-数据汇总grouping、rollup、cube
参考:https://www.cnblogs.com/nikyxxx/archive/2012/11/27/2791001.html 1.rollup (1)rollup在group by 子句中使用 ...