概要

  • 在sdn下,控制平面基于网络测量的的数据控制网络,而细粒度的管理得益于细粒度的测量数据。针对sdn环境下的细粒度测量(识别具体应用程序),可以实现对细粒度的流量管控。
  • 设计了识别系统SBAR,对数据流进行测量,识别出具体应用程序并得到它们的网络数据。针对流分类,SBAR以应用程序协议为参照,使用了机器学习的算法。 针对web和加密流量,使用深度包检测检测包的负载以识别应用程序。同时SBAR利用了OpenFlow提供的测量数据识别应用,交换机利用南向接口向控制器传输数据。最后使用GUI对得到的数据进行整合处理得到全网测量数据。经过验证,SBAR检测的准确率可以达到90%以上(由于使用DPI和ML可能有较大的资源开销和时延)。

Background

  • In the Software-Defined Networking (SDN) paradigm, it is essential to perform comprehensive traffic monitoring in order to provide the control plane with an accurate view of the network state.
  • This enables to perform such an effective fine-grained network management
    with different purposes (e.g., traffic engineering, security).

Related Work

  • NetFlow/IPFIX:There are a plenty of tools based on Netflow that harness the flow-level measurement.
  • Flows are often labeled (e.g., by protocol)
    using port-based classification techniques which is gradually obsoleted beacause it is quite common to find very diverse applications operating over
    the same application protocols(无法从端口号分辨出具体的应用程序)
  • QoE:the QoE perceived by end-users significantly depends on the type of application and the QoS level provided by the network (e.g., bandwidth, delay).(QoE感知取决于应用程序类型以及QoS级别)
  • Deep Packet Inspection (DPI)
    typically achieves very accurate traffic classification by inspecting the packet payloads. However, applying DPI over all the packets traversing a network is often too resource consuming (根据负载分类,资源开销过大)
  • Machine Learning (ML) classifiers were proposed with the aim of alleviating the
    processing burden.Use **features* up to the transport layer to classify the traffic, useless when applied to distinguish among different applications generating traffic over the same protocol(根据特征分类,无法从相同协议分辨出不同程序)

Solution

  • We present SBAR, a monitoring system compliant with OpenFlow that provides flow-level measurement
  • Classify the traffic at two different levels:In the Software-Defined Networking (SDN) paradigm, it is essential to perform comprehensive traffic monitoring in order to provide the control plane with an accurate view of the network state. This
    enables to perform such an effective fine-grained network management with different purposes (e.g., traffic engineering, security).
  • (i) every monitored flow is classified by application protocol,
  • (ii) for web and encrypted traffic, we apply specific DPI techniques to identify the applications (端口号相同要通过负载分辨出具体的应用程序)
    generating each flow

  • Reduce the processing overhead in the controller(s) and the memory consumption in switches to maintain the measurements

Implement

Openflow

  • Leverage the particularities of OpenFlow networks to efficiently implement a combination of techniques based on ML and DPI to accurately classify the traffic in the controller.
  • Leverage the support of OpenFlow to maintain the flow measurements (# of
    packets and bytes, and duration) in the flow tables of the switches
  • OpenFlow provides an interface that permits to report the measurements to the controller(s) when some predefined timeouts (idle and hard) expire
  • Make use of ultiple tables of OpenFlow
    to decouple the operation of this module from other modules executing
    different network tasks (e.g., forwarding) in the controller.

Others

  • Flow sampling using only native features of OpenFlow, which enables to address
    common scalability issues in OpenFlow-based networks.
  1. Per-flow classification by application protocols (e.g., SMTP, SSH) using a ML model
  2. For web and encrypted flows, it applies specific DPI techniques [1, 2] to identify the applications (e.g., Netflix, Facebook) generating traffic.
  • 通过给控制器指定规则,只提取前几个HTTP等协议的包头信息,然后根据某种算法推断出对应的应用程序,节省了开销
  • GUI用于处理SBAR得到的flow-level reports infer high-level traffic
    statistics

Advantages

the classification accuracy acheives 90% or higher.

Disadvantages

Because of the DPI and ML, the resource overhead and latency probably are high(I guess)

Reading SBAR SDN flow-Based monitoring and Application Recognition的更多相关文章

  1. 精读 SBAR SDN flow-Based monitoring and Application Recognition

    目录 架构 测量模块 分类模块 具体实现 实验:最后接入巴塞罗那的校园网流量测试: SBAR: SDN flow-Based monitoring and Application Recognitio ...

  2. Risk Adaptive Information Flow Based Access Control

    Systems and methods are provided to manage risk associated with access to information within a given ...

  3. Paper-[acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning

    [acmi 2015]Image based Static Facial Expression Recognition with Multiple Deep Network Learning ABST ...

  4. [Flow] Declare types for application

    In Flow, you can make global declarion about types. Run: flow init It will generate .flowconfig file ...

  5. Paper reading: High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(HPEN)

    1. Introduction 人脸识别受到各种因素影响,其中最重要的两个影响是 pose 和 expression, 这两个因素会对 intra-person 变化产生极大的影响, 有时候甚至会超过 ...

  6. 3.3 Execution Flow of a DDD Based Application 基于DDD的应用程序执行流程

    3.3 Execution Flow of a DDD Based Application 基于DDD的应用程序执行流程 The figure below shows a typical reques ...

  7. Monitoring and Tuning the Linux Networking Stack: Receiving Data

    http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ ...

  8. Intel® Threading Building Blocks (Intel® TBB) Developer Guide 中文 Parallelizing Data Flow and Dependence Graphs并行化data flow和依赖图

    https://www.threadingbuildingblocks.org/docs/help/index.htm Parallelizing Data Flow and Dependency G ...

  9. [Windows Azure] Adding Sign-On to Your Web Application Using Windows Azure AD

    Adding Sign-On to Your Web Application Using Windows Azure AD 14 out of 19 rated this helpful - Rate ...

随机推荐

  1. linux环境下mysql 5.7.1X 如何重置root密码

    1,vi  /etc/my.cnf [mysqld]下加入参数skip-grant-tables   保存退出. 2,重启mysql [root@21yunwei src]# /etc/init.d/ ...

  2. 解决MyEclipse代码编辑器中汉字太小的问题

    1.问题描述: 新安装的myeclipse 2014,代码编辑器中汉字很小看不清,如下图所示: 2.解决办法: 调整字体即可.通过菜单Windows——Preferences,输入font过滤选择Co ...

  3. sql: postgreSQL sql script

    SELECT * from pg_class c,pg_attribute a,pg_type t where c.relname='BookKindList' and a.attnum>0 a ...

  4. php中怎么理解Closure的bind和bindTo

    bind是bindTo的静态版本,因此只说bind吧.(还不是太了解为什么要弄出两个版本) 官方文档: 复制一个闭包,绑定指定的$this对象和类作用域. 其实后半句表述很不清楚. 我的理解: 把一个 ...

  5. MUI框架-10-MUI 数据交互-跳转详情页面

    MUI框架-10-MUI 数据交互-跳转详情页面 上一篇介绍了如何实现数据交互,给别人的 API 发送 ajax 请求,我们得到数据,再使用 art-template 模板引擎拼接 HTML,最终实现 ...

  6. CentOS 7.2mini版本下编译安装php7.0.10+MySQL5.7.14+Nginx1.10.1

    一.安装前的准备工作 1.yum update    #更新系统 1.1)vi /etc/selinux/config #  禁止SELINUX,设置SELINUX=disabled 2.yum in ...

  7. time random sys 模块

    time模块 顾名思义就是时间模块 我们在之前就用过一些时间模块 比如你想要让打印的时间延迟就time.sleep() 首先我们知道这是一个时间操作的模块 它可以分为三种模式:时间戳模式.格式化时间模 ...

  8. Mybatis学习---Mybatis分页插件 - PageHelper

    1. Mybatis分页插件 - PageHelper说明 如果你也在用Mybatis,建议尝试该分页插件,这个一定是最方便使用的分页插件. 该插件目前支持Oracle,Mysql,MariaDB,S ...

  9. Asp.net core 项目实战 新闻网站+后台 源码、设计原理 、视频教程

    首先说明,视频教程.源码并非本人原创 本人将项目分割开,并写了一些说明. 该视频教程 地址  https://study.163.com/course/courseMain.htm?courseId= ...

  10. 利用Fiddler2和Proxifier分析你用的中国菜刀是否带有后门

    为了避免自己辛辛苦苦拿下的站点被一些拿来主义者不费吹灰之力就据为己有,下面来教大家如何检测菜刀有没有留后门. 对于有没有后门这个问题,大牛们会说抓包看一下就行了,那如何抓包呢?有很多软件可以,这里使用 ...