【bzoj1502】月下柠檬树
Solution
额其实说实在这题我一开始卡在了。。这个阴影长啥样上QwQ
首先因为是平行光线然后投影到了一个水平面上所以这个投影一定是。。若干个圆再加上这些圆的边界这样组成的
额或者说是这样:

就是一些圆和相邻圆的切线组成的边界
然后因为这个是。。一段连续的曲线嘛然后的话浮动应该不会太太太太大所以有一种相对简单的方法就是用Simpson积分直接爆搞(虽然说。。如果你特意构造一下数据的话还是可能会被卡掉的qwq)
注意到这个图形是对称的所以我们可以先只看一半,然后最后输出的时候乘\(2\)就好了
然后这个边界的话我们可以将它看成一个函数\(f\),如果要用Simpson积分的话我们需要快速求这个函数在某个点的取值,我们记当前查询\(f(x)\),那么这个可以分成两种情况:
1、点\((x,f(x))\)在某个圆上,这种时候\(f(x)=\sqrt {r^2-(x-x_O)^2}\),其中\(x_O\)是这个圆的圆心的横坐标,\(r\)是这个圆的半径
2、点\((x,f(x))\)在某条切线上,那这个时候直接把\(x\)带进这条切线的解析式里面就可以得到\(f(x)\)了
然而实际上在实现的时候,并不需要特别分类讨论,只要返回两种算的方法的最大值就好了
那么剩下来的问题,就是如何求两个圆的切线
首先我们需要预处理一下,把被包含的圆去掉
然后接下来我们只讨论不包含的情况

还是用回这张图,我们只看\(x\)轴的上半部分
其中\(A,B\)均为切点,记\(l_{AB}\)与\(x\)轴的夹角为\(\theta\),\(L=O_1O_2\),第一个圆的半径为\(r\),第二个圆的半径为\(R\)
由相似我们可以得到\(sin\theta=\frac{R-r}{L}\),进而我们可以得到\(cos\theta\)
然后知道了\(sin\theta\)和\(cos\theta\)之后,我们就可以知道\(A\)和\(B\)的坐标了:
A&=(x_{O_1}-sin\theta\cdot r,cos\theta \cdot r)\\
B&=(x_{O_2}-sin\theta\cdot R,cos\theta\cdot R)\\
\end{aligned}
\]
然后我们就可以直接求一下\(l_{AB}\)的解析式了,这里不需要担心\(l_{AB}\)的斜率是否存在,因为这个图形保证了不会出现这种情况
然后就很愉快滴做完啦ovo
代码大概长这个样子(额貌似eps要开到1e-6才不会出锅qwq):
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=510;
const double eps=1e-6,inf=2147483647;
double h[N],r[N],O[N],k[N],b[N];
double lx[N],rx[N],ly[N],ry[N];
int have[N];
int n,m;
double alpha,L,R;
double val(double x);
double simpson(double l,double r);
void prework();
void calc(int x);
bool in(int x,int y){return fabs(O[x]-O[y])<=fabs(r[x]-r[y]);}
double sqr(double x){return x*x;}
double solve(double l,double r);
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%d%lf\n",&n,&alpha);
++n;
for (int i=1;i<=n;++i){
scanf("%lf",h+i);
O[i]=h[i]/tan(alpha)+O[i-1];
}
L=inf,R=-inf;
for (int i=1;i<n;++i) scanf("%lf",r+i);
for (int i=1;i<=n;++i)
L=min(O[i]-r[i],L),R=max(O[i]+r[i],R);
prework();
printf("%.2lf\n",solve(L,R)*2.0);
}
double solve(double l,double r){
double mid=(l+r)*0.5,h=simpson(l,r),hmid=simpson(l,mid)+simpson(mid,r);
if (fabs(r-l)<=eps||(fabs(h-hmid)<=eps)) return hmid;
return solve(l,mid)+solve(mid,r);
}
double simpson(double l,double r){
double hl=val(l),hr=val(r),hmid=val((l+r)*0.5);
return (r-l)*(hl+hr+hmid*4.0)/6.0;
}
double val(double x){
double ret=0;
for (int i=1;i<=n;++i)
if (fabs(x-O[i])<=r[i])
ret=max(ret,sqrt(sqr(r[i])-sqr(x-O[i])));
for (int i=1;i<n;++i){
if (have[i]) continue;
if (lx[i]<=x&&x<=rx[i])
ret=max(ret,k[i]*x+b[i]);
}
return ret;
}
void prework(){
for (int i=1;i<n;++i){
have[i]=in(i,i+1);
if (have[i]) continue;
calc(i);
}
}
void calc(int x){
double l=(O[x+1]-O[x]);
double theta=asin((r[x+1]-r[x])/l);
double x1,y1,x2,y2;
x1=O[x]-sin(theta)*r[x]; y1=cos(theta)*r[x];
x2=O[x+1]-sin(theta)*r[x+1]; y2=cos(theta)*r[x+1];
lx[x]=x1; ly[x]=y1;
rx[x]=x2; ry[x]=y2;
k[x]=(y2-y1)/(x2-x1);
b[x]=y1-k[x]*x1;
}
【bzoj1502】月下柠檬树的更多相关文章
- [BZOJ1502]月下柠檬树(自适应辛普森积分)
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1387 Solved: 739[Submit][Status] ...
- 【BZOJ1502】[NOI2005]月下柠檬树 Simpson积分
[BZOJ1502][NOI2005]月下柠檬树 Description 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树 ...
- 【BZOJ-1502】月下柠檬树 计算几何 + 自适应Simpson积分
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1017 Solved: 562[Submit][Status] ...
- BZOJ 1502: [NOI2005]月下柠檬树 [辛普森积分 解析几何 圆]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1070 Solved: 596[Submit][Status] ...
- [NOI2005]月下柠檬树[计算几何(simpson)]
1502: [NOI2005]月下柠檬树 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1169 Solved: 626[Submit][Status] ...
- 【bzoj 1502】月下柠檬树
月下柠檬树 题意 求n个圆与他们的公切线的定积分. 解法 求出圆的公切线就可以了. 特别坑的一点 : 最两端的圆,有可能会被其他的圆所包含,所以要重新求一下最左端与最右端. 比较坑的一点 : 精度要设 ...
- [NOI2005]月下柠檬树
题意 F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ ModifyUser autoint Logout 捐赠本站 Probl ...
- 5.21 省选模拟赛 luogu P4207 [NOI2005]月下柠檬树 解析几何 自适应辛普森积分法
LINK:月下柠檬树 之前感觉这道题很鬼畜 实际上 也就想到辛普森积分后就很好做了. 辛普森积分法的式子不再赘述 网上多的是.值得一提的是 这道题利用辛普森积分法的话就是一个解析几何的问题 而并非计算 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- BZOJ1502:[NOI2005]月下柠檬树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1502 https://www.luogu.org/problemnew/show/P4207 李哲 ...
随机推荐
- windows下对python的pip更新到最新版本
1->打开windows的命令窗口. 2->进入到pip.exe所在的文件夹下,我安装的python在G:\python3.6文件夹下,pip.exe则在G:\python3.6\Scri ...
- 笔试题——C++字符排序
题目:字符排序 题目介绍:输入一组以空格隔开的字数串,将它们奇数位升序排序,偶数位降序排序,再重新输出成新的字数串. 例: 输入: 4 6 2 3 6 7 8 1 奇数位:4 2 6 8 ——2 4 ...
- sql server block如何查询并kill
本帖提供两种做法,可避免在 SQL Server 事务锁定时产生的不正常或长时间阻塞,让用户和程序也无限期等待,甚至引起 connection pooling 连接数超过容量. 所谓的「阻塞」,是指当 ...
- spark-local-运行异常-Could not locate executable null\bin\winutils.exe in the Hadoop binaries
windows下-local模式-运行spark: 1.下载winutils的windows版本 GitHub上,有人提供了winutils的windows的版本,项目地址是:https://gith ...
- Java 学习笔记 ------第四章 认识对象
本章学习目标: 区分基本类型与类类型 了解对象与参考的关系 从打包器认识对象 以对象观点看待数组 认识字符串的特性 一."=" 和 "==" 当=用于基本类型时 ...
- OOP 1.2 const关键字
1.2 const关键字 1.常量 指针常量 定义常量:const 类型 =值 定义指针常量:const *类型=值 常量指针不可通过常量指针修改其指向的内容 可直接修改其指向的内容 常量指针的指向可 ...
- fastjson&gson
1.model转fastjson时,model成员变量是对象的,再转成fastjson时,不能仅仅判断key是否存在.应该判断其值是否为"". 2.gson 在 dao层貌似没有用 ...
- lintcode-491-回文数
491-回文数 判断一个正整数是不是回文数. 回文数的定义是,将这个数反转之后,得到的数仍然是同一个数. 注意事项 给的数一定保证是32位正整数,但是反转之后的数就未必了. 样例 11, 121, 1 ...
- JavaScript DOM编程艺术学习笔记-第一章JavaScript简史
一,JavaScript的起源 JavaScript是Netscape与Sun公司合作开发,它是一种脚本语言,通常只能通过Web浏览器去完成一些操作.JavaScript为程序员提供了一些操控Web浏 ...
- TCP系列47—拥塞控制—10、FACK下的快速恢复与PRR
一.概述 FACK下的重传我们在之前的重传部分已经进行了介绍,这里简单介绍一下随着FACK提出的拥塞控制算法的改进及随后的进一步改进. 从我们之前介绍的RFC2582和RFC5681中可以看到,快速恢 ...