15 Independent Alleles
Problem
Two events AA and BB are independent if Pr(A and B)Pr(A and B) is equal to Pr(A)×Pr(B)Pr(A)×Pr(B). In other words, the events do not influence each other, so that we may simply calculate each of the individual probabilities separately and then multiply.
More generally, random variables XX and YY are independent if whenever AA and BB are respective events for XX and YY, AA and BB are independent (i.e., Pr(A and B)=Pr(A)×Pr(B)Pr(A and B)=Pr(A)×Pr(B)).
As an example of how helpful independence can be for calculating probabilities, let XX and YY represent the numbers showing on two six-sided dice. Intuitively, the number of pips showing on one die should not affect the number showing on the other die. If we want to find the probability that X+YX+Y is odd, then we don't need to draw a tree diagram and consider all possibilities. We simply first note that for X+YX+Y to be odd, either XX is even and YY is odd or XX is odd and YY is even. In terms of probability, Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even)Pr(X+Y is odd)=Pr(X is even and Y is odd)+Pr(X is odd and Y is even). Using independence, this becomes [Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)][Pr(X is even)×Pr(Y is odd)]+[Pr(X is odd)×Pr(Y is even)], or (12)2+(12)2=12(12)2+(12)2=12. You can verify this result in Figure 2, which shows all 36 outcomes for rolling two dice.
Given: Two positive integers kk (k≤7k≤7) and NN (N≤2kN≤2k). In this problem, we begin with Tom, who in the 0th generation has genotype Aa Bb. Tom has two children in the 1st generation, each of whom has two children, and so on. Each organism always mates with an organism having genotype Aa Bb.
Return: The probability that at least NN Aa Bb organisms will belong to the kk-th generation of Tom's family tree (don't count the Aa Bb mates at each level). Assume that Mendel's second law holds for the factors.
Sample Dataset
2 1
Sample Output
0.684 方法一:
import itertools
def f(k,n):
p = []
child_num = 2**k
for i in range(n):
p.append(len(list(itertools.combinations([x for x in range(child_num)],i)))*(0.25**i)*(0.75**(child_num-i)))
# combinations('ABCD', 2) AB AC AD BC BD CD
return 1-sum(p) print f(5,8)
15 Independent Alleles的更多相关文章
- 分享最新15个加速 Web 开发的框架和工具
我们为开发人员挑选了15个最新的 Web 开发框架,你肯定尝试一下这些新鲜的框架,有的可能略微复杂,有的提供了很多的配置选项,也有一些窗口小部件和界面交互的选择.他们将帮助你创建更优秀的网站,提供给 ...
- Andrew Ng机器学习公开课笔记–Independent Components Analysis
网易公开课,第15课 notes,11 参考, PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低 ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的 对于 ...
- [转]15 个顶级 HTML5 游戏引擎
本文转自:http://www.open-open.com/news/view/13874db 1) HTML5 Game Engine Construct 2 is a leading high q ...
- 分享最新15个加速 Web 开发的框架和工具(梦想天空)
我们为开发人员挑选了15个最新的 Web 开发框架,你肯定尝试一下这些新鲜的框架,有的可能略微复杂,有的提供了很多的配置选项,也有一些窗口小部件和界面交互的选择.他们将帮助你创建更优秀的网站,提供给 ...
- 斯坦福ML公开课笔记15—隐含语义索引、神秘值分解、独立成分分析
斯坦福ML公开课笔记15 我们在上一篇笔记中讲到了PCA(主成分分析). PCA是一种直接的降维方法.通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果. 本文继续PCA的话题, ...
- 基于Hama并联平台Finding a Maximal Independent Set 设计与实现算法
笔者:白松 NPU学生. 转载请注明出处:http://blog.csdn.net/xin_jmail/article/details/32101483. 本文參加了2014年CSDN博文大赛,假设您 ...
- [python] python django web 开发 —— 15分钟送到会用(只能送你到这了)
1.安装python环境 1.1 安装python包管理器: wget https://bootstrap.pypa.io/get-pip.py sudo python get-pip.py 1. ...
- 15个常用GCC命令
GCC编译器非常强大 ,在各个发行的Linux系统中都非常流行,本文介绍的是一些常用的gcc编译选项 下面这段代码将回围绕整个文章: 编辑main.c如下. #include<stdio.h&g ...
- android异常 More than one file was found with OS independent path 'META-INF/XXX'
android 异常总结:一个文件在jar包中出现多次. Error:Execution failed for task ':app:transformResourcesWithMergeJavaRe ...
随机推荐
- Javascript模块化编程require.js的用法
JS模块化工具requirejs教程(一):初识requirejs http://www.runoob.com/w3cnote/requirejs-tutorial-1.html JS模块化工具req ...
- mysql中distinct
1.Distinct 位置 单独的distinct只能放在开头,否则报错,语法错误,与其他函数使用时候,没有位置限制如下 Select player_id,count(distinct(task_id ...
- bzoj2431逆序对数列
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2431 很容易想到n^3的做法.就是前 i 个数用第 i 个数最多能 i - 1 个逆序对,所 ...
- 玩转Panabit 2008 Live CD到U盘,Panabit随身行
直接将Panabit 2008 Live CD的内容复制到U盘,即把Live CD转成U盘启动盘,U盘可写,方便保存配置.要能正常使用,必须机器支持USB启动,才能用上:但是熟悉此方法,同样可以灵活用 ...
- CSS背景图像的简单响应
本文设有很多,最理想的解决方案,响应图像只是其中之一.我们建议您查看不同的方法,然后再选择一个特定的响应图像解决方案,包括这两个:如何避免重复下载响应图像中选择响应图像解决方案. 大家都在谈论的的sr ...
- java 面向对象 — 封装
- C++ 实例化对象 p->printX()
一.从栈实例化对象 我们首先定义一个类,类的名字叫TV,里面包括两个成员变量,两个成员函数. class TV // 定义一个电视的类TV { public: ]; // 定义类的属性,一个数组 in ...
- 《Linux内核精髓:精通Linux内核必会的75个绝技》一HACK #6 使用localmodconfig缩短编译时间
HACK #6 使用localmodconfig缩短编译时间 本节介绍使用make localmodconfig生成精简的.config文件,缩短内核编译时间的方法.为了能够应对各种各样的环境,发布版 ...
- Python——截取web网页长图
# -*- coding: utf8 -*-import timeimport xlrdfrom selenium import webdriver def read_excel(filename): ...
- C++中构造函数作用
一. 构造函数是干什么的 class Counter { public: // 类Counter的构造函数 // 特点:以类名作为函数名,无返回类型 Counter() { m_value = ; } ...