在某些情况下,丢包可能并不是造成延时的原因。你可能会发现尽管两台主机之间通讯速度很慢,但这种慢速并没有伴随着TCP重传或是重复ACK的征兆。在这种情况下,需要使用另一种方式来定位高延时点。

查找高延时点最有效的方法之一是检查最初的握手信号以及跟随其后的几个报文。例如,一个简单的客户端与网络服务器的连接,客户端尝试通过浏览器访问网络服务器的站点。我们只关心这一通信序列的前六个报文,包括TCP握手过程,首次HTTP GET请求,对此GET请求的确认,以及从服务器发至客户端的第一个数据报文。

更多信息

正常通讯:

在讨论高延时状况之前,找一个正常的通讯作为参照。在第二节已经介绍过TCP握手过程以及HTTP通讯,这里不再赘述。在下面这张图里,我们关心的部分只有Time列:

这一通讯序列是非常快速的,整个过程耗时不到0.1秒。

接下来几个抓包文件包含同样的traffic模式,但是在报文时序上有所不同。

慢速通讯——线路延时:

让我们看看下面这个报文。注意到所有报文都是相同的,除了报文2和5的时间延时较长:

逐一分析这六个报文,立刻就会看到第一次延时。客户端(172.16.16.128)发送首次SYN报文以开始TCP握手,在服务器(74.125.95.104)返回SYN/ACK之前,有0.87秒的延时。这是线路延时的第一个信号,这是由客户端和服务器之间的设备引起的。

我们判断这是线路延时的依据是所传送的报文类型特征。当服务器接收到一个SYN报文,只需花费很少的处理过程就可发送回复,因为这一工作负载并不包含任何传输层之上的处理。即使服务器工作负载非常繁重,它通常也会快速地以SYN/ACK来回复SYN报文。这就排除了服务器是高延时的潜在原因。

客户端也被排除的原因在于,它除了接收SYN/ACK报文之外,没有进行任何处理。

这一抓包的前两个报文帮我们排除了客户端和服务器,并指出了潜在原因。

继续分析,我们发现结束三步握手信号的ACK报文快速出现,客户端发送的HTTP GET请求也是如此。产生这两个报文的所有处理在本地客户端接收到SYN/ACK之后进行,因此在客户端没有繁重的负载需要处理的情况下,这两个报文预计会很快传送。

到了报文5,我们看到另一个延时高得离谱的报文。出现在最初的HTTP GET请求发送过后,从服务器返回的ACK报文花费了1.15秒才收到。接收到HTTP GET请求之后,服务器在开始发送数据之前首先发送了一个TCP ACK,同样只需占用服务器很少的处理。这是另一个线路延时的信号。

不管何时你经历着线路延时,你几乎总是会看到:在最初的握手信号期间的SYN/ACK报文,以及整个通讯过程的ACK报文中,存在着高延时。即使这一信息并没有告诉你网络上延时的确切原因,至少让你明白客户端和服务器都不是延时点所在,因此延时发生在两者之间的设备。这时,你应当开始检查受影响主机之间的各种防火墙,路由器,以及代理,以定位罪魁祸首。

慢速通讯——客户端延时:

下一个延时场景的抓包如下图所示:

这一抓包开始时很正常,TCP握手非常迅速,没有任何延时的迹象。正常状态持续至第四个报文:握手信号结束之后接收到一个HTTP GET请求。这个报文距离前一个接收到的报文有1.34秒的延时。

要确认网络的延时点,需要检查第3和第4个报文之间发生了什么。报文3是客户端发送到服务器的TCP握手信号中的最后一个ACK,报文4是从客户端发送至服务器的GET请求。这两个报文的共同之处在于都是由客户端发送,并且独立于服务器。由于所有这些操作都集中在客户端上,GET请求应当在发送了ACK之后快速传送。

不幸的是对于终端用户,从ACK到GET的传送并没有快速发生。GET报文的创建与传输取决于应用层的处理,这一过程中的延时意味着客户端无法及时的执行这一功能。这表示客户端最终为通讯中的高延时负责。

慢速通讯——服务器延时:

最后一个延时场景的抓包如下图所示:

在这一抓包中,两个主机之间的TCP握手过程完成得干脆利落,因此开始时并无问题。接下来几个报文也很顺利,首个GET请求及回复ACK报文也在快速交付。直到最后一个报文,我们看到了高延时的信号。

第六个报文是服务器响应客户端GET请求的第一个HTTP数据报文,但是在服务器发送GET请求的TCP ACK 0.98秒之后才到达。报文5和6的传送过程与我们在前一个场景所见ACK和GTE请求的传送类似。但是,在这一情况下,服务器是我们关注的焦点。

报文5是服务器对从客户端接收GET请求的回应。只要该报文被发送,服务器就应当立即发送数据。这一读取,封装,传送的过程是由HTTP协议完成的,由于这是应用层协议,需要服务器参与处理过程。这一报文的延迟接收表明服务器无法在合理的时间内处理数据,最终指向服务器是延时点。

延时定位思路:

通过六个报文,我们能够定位服务器与客户端之间的网络高延时点。这些场景可能看起来有点复杂,但是下图能使你的定位延时过程变得简单快捷。这一原则几乎能应用于任何基于TCP的通讯。

一站式学习Wireshark(六):狙击网络高延时点的更多相关文章

  1. 一站式学习Wireshark(转载)

    一站式学习Wireshark(一):Wireshark基本用法 2014/06/10 · IT技术 · 4 评论 · WireShark 分享到: 115 与<YII框架>不得不说的故事— ...

  2. Docker学习(六): 网络使用与配置

    特别声明: 博文主要是学习过程中的知识整理,以便之后的查阅回顾.部分内容来源于网络(如有摘录未标注请指出).内容如有差错,也欢迎指正! =============系列文章============= 1 ...

  3. 一站式学习Wireshark(四):网络性能排查之TCP重传与重复ACK

    作为网络管理员,很多时间必然会耗费在修复慢速服务器和其他终端.但用户感到网络运行缓慢并不意味着就是网络问题. 解决网络性能问题,首先从TCP错误恢复功能(TCP重传与重复ACK)和流控功能说起.之后阐 ...

  4. 一站式学习Wireshark(二):应用Wireshark观察基本网络协议

    TCP: TCP/IP通过三次握手建立一个连接.这一过程中的三种报文是:SYN,SYN/ACK,ACK. 第一步是找到PC发送到网络服务器的第一个SYN报文,这标识了TCP三次握手的开始. 如果你找不 ...

  5. 一站式学习Wireshark(三):应用Wireshark IO图形工具分析数据流

    基本IO Graphs: IO graphs是一个非常好用的工具.基本的Wireshark IO graph会显示抓包文件中的整体流量情况,通常是以每秒为单位(报文数或字节数).默认X轴时间间隔是1秒 ...

  6. 一站式学习Wireshark(五):TCP窗口与拥塞处理

    https://community.emc.com/message/821593#821593 介绍 TCP通过滑动窗口机制检测丢包,并在丢包发生时调整数据传输速率.滑动窗口机制利用数据接收端的接收窗 ...

  7. 一站式学习Wireshark(一):Wireshark基本用法

    按照国际惯例,从最基本的说起. 抓取报文: 下载和安装好Wireshark之后,启动Wireshark并且在接口列表中选择接口名,然后开始在此接口上抓包.例如,如果想要在无线网络上抓取流量,点击无线接 ...

  8. 一站式学习Wireshark(九):应用Wireshark显示过滤器分析特定数据流(上)

    介绍 掌握显示过滤器对于网络分析者来说是一项必备的技能.这是一项大海捞针的技巧.学会构建,编辑,保存关键的显示过滤器能够节省数小时的时间. 与捕捉过滤器使用的BPF语法不同,显示过滤器使用的是Wire ...

  9. 一站式学习Wireshark(八):应用Wireshark过滤条件抓取特定数据流

    应用抓包过滤,选择Capture | Options,扩展窗口查看到Capture Filter栏.双击选定的接口,如下图所示,弹出Edit Interface Settints窗口. 下图显示了Ed ...

随机推荐

  1. 学会快速装系统 图解硬盘分区软件Norton Ghost使用

    http://edu.itbulo.com/200909/126313_5.htm即使你拥有最先进的电脑,采用传统的方法,Windows的安装速度仍然是令人头痛的!有没有什么重装系统的简便方法呢?当然 ...

  2. POJ 3691 DNA Sequence (AC自动机 + 矩阵 有bug,待修改)

    DNA Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9889   Accepted: 3712 Desc ...

  3. 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL (转)

    在访问现在很火的google plus时,细心的用户也许会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变.并且能够很好的支持浏览器的前进和后退.不禁让人想问,是什么有这么强大 ...

  4. regular expression 练习

    练习有一个文件,文件名为output_1981.10.21.txt .下面使用Python: 读取文件名中的日期时间信息,并找出这一天是周几.将文件改名为output_YYYY-MM-DD-W.txt ...

  5. 转 如何使用Windows Media Load Simulator进行Windows Media服务器性能测试和监控

    Windows Media Load Simulator(WMLS)有两个主要的用途:作为极值或者压力测试工具和在线监视器.   1   极值和压力压力测试:你能够在达到期望的极值压力条件下测试离线的 ...

  6. 转:http协议学习

    协议详解篇 2.1 HTTP/1.0和HTTP/1.1的比较 RFC 1945定义了HTTP/1.0版本,RFC 2616定义了HTTP/1.1版本. 笔者在blog上提供了这两个RFC中文版的下载地 ...

  7. JMeter学习笔记--创建数据库测试计划

    添加线程组(并发用户):线程数(10),Rame-Up Period(0), Loop Count(3) 线程组添加JDBC请求(配置元件):Variable Name(MySQL), Databas ...

  8. libXext.so.6 libXp.so.6 libXt.so.6 is needed by openmotif21-2.1.30-11.el7.i686

    # rpm -ivh openmotif21--.el7.i686.rpm error: Failed dependencies: libXext.so. -.el7.i686 libXp.so. - ...

  9. 经纬度 lbs 笔记

      string Lat = objRequest.HeadLat.ToString();   纬度                 string Lng = objRequest.HeadLng.T ...

  10. ADF_ADF Framework基本概念(概念)

    2014-01-01 Created By BaoXinjian