题目大意:立体的八数码问题,一次操作是滚动一次方块,问从初始状态到目标状态的最少滚动次数。

题目分析:这道题已知初始状态和目标状态,且又状态数目庞大,适宜用双向BFS。每个小方块有6种状态,整个大方格有9*6^8个状态。每个小方块用一位6进制数表示即可。

注意:状态转移时要谨慎,否则会出现意想不到的错误;

   这道题的末状态有256(2^8)个,如果对搜索层数不加限制,即使双向BFS也会TLE的,当限制正向搜索15层逆向搜索15层至正向搜索27层反向搜索3层时都能AC(我下面贴出的程序是这样的),其中正向搜21层,逆向搜9层时在时间上最高效;

   对于这道题,开辟一个恰当大小的标记数组也能使时间降低一大截;

代码如下:

# include<iostream>
# include<cstdio>
# include<cmath>
# include<map>
# include<queue>
# include<cstring>
# include<algorithm>
using namespace std; struct Node
{
int t,n,s;
Node(int _t,int _n,int _s):t(_t),n(_n),s(_s){}
bool operator < (const Node &a) const {
return t>a.t;
}
}; map<char,int>mp;
int ss[8]={1,6,36,216,1296,7776,46656,279936};
int goal[9],path[9],vis[9][1679616],dist[9][1679616];
int d[4][2]={{1,0},{-1,0},{0,-1},{0,1}};
int p[6][4]={
{2,2,5,5},
{4,4,3,3},
{0,0,4,4},
{5,5,1,1},
{1,1,2,2},
{3,3,0,0},
};
priority_queue<Node>q[2]; void dfs(int u,int gp)
{
if(u==9){
int sta=0,cnt=0;
for(int i=0;i<9;++i)
if(path[i]!=-1){
sta=sta+ss[7-cnt]*path[i];
++cnt;
}
dist[gp][sta]=0;
vis[gp][sta]=1;
q[1].push(Node(0,gp,sta));
return ;
}
if(goal[u]==1){
path[u]=0;
dfs(u+1,gp);
path[u]=1;
dfs(u+1,gp);
}else if(goal[u]==2){
path[u]=2;
dfs(u+1,gp);
path[u]=3;
dfs(u+1,gp);
}else if(goal[u]==3){
path[u]=4;
dfs(u+1,gp);
path[u]=5;
dfs(u+1,gp);
}else{
path[u]=-1;
dfs(u+1,gp);
}
} void init(int x,int y)
{
while(!q[0].empty())
q[0].pop();
while(!q[1].empty())
q[1].pop();
memset(dist,-1,sizeof(dist));
memset(vis,-1,sizeof(vis));
dist[x*3+y][0]=0;
vis[x*3+y][0]=0;
q[0].push(Node(0,x*3+y,0));
for(int i=0;i<9;++i)
if(goal[i]==0){
dfs(0,i);
break;
}
} int getv(int p,int s)
{
for(int i=1;i<=8-p;++i)
s/=6;
return s%6;
} int bfs(int id,int step)
{
while(!q[id].empty())
{
Node u=q[id].top();
if(u.t>step)
return -1;
q[id].pop(); if(vis[u.n][u.s]==!id)
return u.t; int gg[9];
int x=u.n/3,y=u.n%3;
for(int i=0;i<4;++i){
int nx=x+d[i][0],ny=y+d[i][1];
if(nx<0||nx>2||ny<0||ny>2)
continue; int s=u.s;
for(int j=8;j>=0;--j){
if(j==u.n)
gg[j]=-1;
else{
gg[j]=s%6;
s/=6;
}
}
gg[u.n]=p[gg[nx*3+ny]][i];
gg[nx*3+ny]=-1;
int sta=0,cnt=0;
for(int j=0;j<9;++j)
if(gg[j]!=-1){
sta=sta+ss[7-cnt]*gg[j];
++cnt;
}
if(vis[nx*3+ny][sta]!=id){
if(vis[nx*3+ny][sta]==-1){
vis[nx*3+ny][sta]=id;
dist[nx*3+ny][sta]=u.t+1;
q[id].push(Node(u.t+1,nx*3+ny,sta));
}
else
return u.t+1+dist[nx*3+ny][sta];
}
}
}
return -1;
} int solve()
{
int step=0;
while(!q[0].empty()||!q[1].empty()){
if(step>30)
return -1;
if(!q[0].empty()&&step<=21){
int k=bfs(0,step);
if(k>30)
return -1;
if(k!=-1)
return k;
}
if(!q[1].empty()&&step<=9){
int k=bfs(1,step);
if(k>30)
return -1;
if(k!=-1)
return k;
}
++step;
}
return -1;
} int main()
{
//freopen("UVA-1604 Cubic Eight-Puzzle.txt","r",stdin);
mp['E']=0,mp['W']=1,mp['R']=2,mp['B']=3;
int x,y,gx,gy;
char s[2];
while(scanf("%d%d",&y,&x)&&(x+y))
{
--x,--y;
for(int i=0;i<9;++i){
scanf("%s",s);
goal[i]=mp[s[0]];
}
init(x,y);
printf("%d\n",solve());
}
return 0;
}

  

UVA-1604 Cubic Eight-Puzzle (双向BFS+状态压缩+限制搜索层数)的更多相关文章

  1. ACM/ICPC 之 BFS+状态压缩(POJ1324(ZOJ1361))

    求一条蛇到(1,1)的最短路长,题目不简单,状态较多,需要考虑状态压缩,ZOJ的数据似乎比POj弱一些 POJ1324(ZOJ1361)-Holedox Moving 题意:一条已知初始状态的蛇,求其 ...

  2. HDU1429+bfs+状态压缩

    bfs+状态压缩思路:用2进制表示每个钥匙是否已经被找到.. /* bfs+状态压缩 思路:用2进制表示每个钥匙是否已经被找到. */ #include<algorithm> #inclu ...

  3. BFS+状态压缩 hdu-1885-Key Task

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1885 题目意思: 给一个矩阵,给一个起点多个终点,有些点有墙不能通过,有些点的位置有门,需要拿到相应 ...

  4. poj 1753 Flip Game(bfs状态压缩 或 dfs枚举)

    Description Flip game squares. One side of each piece is white and the other one is black and each p ...

  5. BFS+状态压缩 HDU1429

    胜利大逃亡(续) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  6. hdoj 5094 Maze 【BFS + 状态压缩】 【好多坑】

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others) Total Sub ...

  7. HDU 3247 Resource Archiver (AC自己主动机 + BFS + 状态压缩DP)

    题目链接:Resource Archiver 解析:n个正常的串.m个病毒串,问包括全部正常串(可重叠)且不包括不论什么病毒串的字符串的最小长度为多少. AC自己主动机 + bfs + 状态压缩DP ...

  8. HDU 1885 Key Task (BFS + 状态压缩)

    题意:给定一个n*m的矩阵,里面有门,有钥匙,有出口,问你逃出去的最短路径是多少. 析:这很明显是一个BFS,但是,里面又有其他的东西,所以我们考虑状态压缩,定义三维BFS,最后一维表示拿到钥匙的状态 ...

  9. hdu 1429(bfs+状态压缩)

    题意:容易理解,但要注意的地方是:如果魔王回来的时候刚好走到出口或还未到出口都算逃亡失败.因为这里我贡献了一次wa. 分析:仔细阅读题目之后,会发现最多的钥匙数量为10把,所以把这个作为题目的突破口, ...

随机推荐

  1. python 的 ord()、 chr()、 unichr() 函数

    一. ord() 函数描述ord() 函数是 chr() 函数(对于8位的ASCII字符串)或 unichr() 函数(对于Unicode对象)的配对函数,它以一个字符(长度为1的字符串)作为参数,返 ...

  2. BaseLayout

    angularjs2 knockoutjs framework7 jquerymobile bootstrap html5 css [Activity(Label = "ActivityBa ...

  3. spring自定义事务同步器(二):借助redisson实现自己的同步器

    1. 借助redis的java客户端redisson实现自己的事物同步器 @Override public void lockWithinCurrentTransaction(Object key) ...

  4. centos 文档的压缩和打包 gzip,bzip2,xz,zip,unzip,tar,tgz 第九节课

    centos  文档的压缩和打包   gzip,bzip2,xz,zip,unzip,tar,tgz  第九节课 SAS盘可以支持热插拔,看机器 tar.zip.tar -czvf 不会动源文件,gz ...

  5. js-template-art【三】js api

    一.js api使用 1.template(filename, data) 根据模板名渲染模板. var html = template('tplScriptId', { value: 'aui' } ...

  6. 开发一个根据xml创建代理类的小框架

    github地址 https://github.com/1367356/GradleTestUseSubModule/tree/master/CreateMyFrameWork 1:定义一些规则

  7. 解读webpack的bundle.js

    可能就是好奇心略重了,读了一下webpack打包后的bundle.js的代码,复杂的模块可能读不懂,但简单的hello world模块我还是能看懂的.没什么目的,就是想通过几个简单的模块,一条简单的w ...

  8. (1)R介绍

    1. R初窥 从CRAN(The Comprehensive R Archive Network)cran.r-project.org—mirrors.html中选择一个镜像,然后下载合适的安装包(R ...

  9. 零碎收集cocos知识

    Configuration类 返回环境变量 local function menuCallback(tag, pSender) printInfo("selected item tag:%d ...

  10. CodeForces - 366C Dima and Salad (01背包)

    题意:n件东西,有属性a和属性b.要选取若干件东西,使得\(\frac{\sum a_j}{\sum b_j} = k\).在这个条件下,问\(\sum a_j\)最大是多少. 分析:可以将其转化为0 ...