显然可以转化为一个阶梯状01矩阵每行每列取一个使权值和为k的方案数。直接做不可做,考虑设f[i][j]为前i行权值和至少为j,即在其中固定了j行选1的方案数。设第i行从1~a[i]列都是1且a[i]+1列是0,则f[i][j]=f[i-1][j]+f[i-1][j-1]*(a[i]-j+1)。剩下的可以随便填,于是f[n][i]*=(n-i)!。求完之后考虑容斥,权值和恰好为x的在权值和至少为k的方案中被算了C(x,k)次,得ans=Σ(-1)i-kf[n][i]·C(i,k) (i=k~n)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
#define P 1000000009
int n,m,w[N],v[N],a[N],f[N][N],C[N][N],fac[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3622.in","r",stdin);
freopen("bzoj3622.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) w[i]=read();
for (int i=;i<=n;i++) v[i]=read();
fac[]=;for (int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%P;
sort(w+,w+n+),sort(v+,v+n+);
for (int i=;i<=n;i++)
for (int j=n;j;j--)
if (w[i]>v[j]) {a[i]=j;break;}
if (n+m&) {cout<<;return ;}
m=n+m>>;
f[][]=;C[][]=;
for (int i=;i<=n;i++)
{
f[i][]=f[i-][];C[i][]=C[i][i]=;
for (int j=;j<=n;j++)
f[i][j]=(f[i-][j]+1ll*f[i-][j-]*(a[i]-j+)%P)%P;
for (int j=;j<i;j++) C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
int ans=;
for (int i=m;i<=n;i++)
if (i-m&) ans=(ans-1ll*f[n][i]*fac[n-i]%P*C[i][m]%P+P)%P;
else ans=(ans+1ll*f[n][i]*fac[n-i]%P*C[i][m]%P)%P;
cout<<ans;
return ;
}

BZOJ3622 已经没有什么好害怕的了(动态规划+容斥原理)的更多相关文章

  1. BZOJ3622 已经没有什么好害怕的了 动态规划 容斥原理 组合数学

    原文链接https://www.cnblogs.com/zhouzhendong/p/9276479.html 题目传送门 - BZOJ3622 题意 给定两个序列 $a,b$ ,各包含 $n$ 个数 ...

  2. [bzoj3622]已经没有什么好害怕的了_动态规划_容斥原理

    bzoj-3622 已经没有什么好害怕的了 题目大意: 数据范围:$1\le n \le 2000$ , $0\le k\le n$. 想法: 首先,不难求出药片比糖果小的组数. 紧接着,我开始的想法 ...

  3. bzoj3622已经没有什么好害怕的了

    bzoj3622已经没有什么好害怕的了 题意: 给n个数Ai,n个数Bi,将Ai中的数与Bi中的数配对,求配对Ai比Bi大的比Bi比Ai大的恰好有k组的方案数.n,k≤2000 题解: 蒟蒻太弱了只能 ...

  4. [BZOJ3622]已经没有什么好害怕的了(容斥DP)

    给定两个数组a[n]与b[n](数全不相等),两两配对,求“a比b大”的数对比“b比a大”的数对个数多k的配对方案数. 据说做了这题就没什么题好害怕的了,但感觉实际上这是一个套路题,只是很难想到. 首 ...

  5. BZOJ3622 已经没有什么好害怕的了 【dp + 二项式反演】

    题目链接 BZOJ3622 题解 既已开题 那就已经没有什么好害怕的了 由题目中奇怪的条件我们可以特判掉\(n - k\)为奇数时答案为\(0\) 否则我们要求的就是糖果大于药片恰好有\(\frac{ ...

  6. bzoj3622已经没有什么好害怕的了 dp+组合+容斥(?)

    3622: 已经没有什么好害怕的了 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1033  Solved: 480[Submit][Status][ ...

  7. BZOJ3622 已经没有什么好害怕的了

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  8. 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp

    Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...

  9. 洛谷 P4859 && BZOJ3622: 已经没有什么好害怕的了

    题目描述 给出 \(n\) 个数 \(a_i\)​ ,以及 \(n\) 个数 \(b_i\)​ ,要求两两配对使得 \(a>b\) 的对数减去 \(a<b\) 的对数等于 \(k\) . ...

随机推荐

  1. 【转载】关于RenderTarget的注意事项

    原文:关于RenderTarget的注意事项 1. 设置一个RenderTarget会导致viewport变成跟RenderTarget一样大 2. 反锯齿类型必须跟DepthStencilBuffe ...

  2. 安装centos minimal 版本后安装mysql详细过程(linux)

    本文内容参考自:http://www.centoscn.com/mysql/2014/1211/4290.html PS:Yum(全称为 Yellow dog Updater, Modified)是一 ...

  3. Visual Studio设置字体及护眼背景色

    打开vs 菜单栏选择: 工具 -> 选择 -> 环境 -> 字体和颜色,如图所示 字体可以如上选择,背景色选择项背景,点击自定义,如下设置即可.

  4. Python数据可视化的10种技能

    今天我来给你讲讲Python的可视化技术. 如果你想要用Python进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解.其中最直观的就是采用数据可视化技术,这样,数据 ...

  5. iOS 播放音频文件

    //        播放音乐 NSString *path = [[NSBundle mainBundle] pathForResource:@"1670" ofType:@&qu ...

  6. JavaScript事件冒泡和捕获

    事件捕获指的是从document到触发事件的那个节点,即自上而下的去触发事件. 事件冒泡是自下而上的去触发事件. 绑定事件方法的第三个参数,就是控制事件触发顺序是否为事件捕获.true,事件捕获:fa ...

  7. 基础的Servlet

    1.认识Servlet 今天接触了Servlet,我就写了这篇Servlet的文章.首先,我们了解一下Servlet是什么: 这是百度百科的解释,我个人理解是可以用来前后端交互的一个东西,例如可以实现 ...

  8. 如何在DCS管理控制台将两个Redis主备实例建立全球灾备。

    华为云分布式缓存服务DCS,具有强大的功能,现在小编教大家如何在DCS管理控制台将两个Redis主备实例建立全球灾备. 建立全球灾备,会对主实例和备实例进行升级,实例进程会重启,连接会中断.同时备实例 ...

  9. django项目中关于跨域CORS

    1.使用django-cors-headers扩展,但首先进行安装 2.在配置中添加应用 3.在中间层中设置:“corsheaders.middleware.CorsMiddleware” 4.添加C ...

  10. 冲刺ing-5

    第五次Scrum冲刺 队员完成的任务 队员 完成任务 吴伟华 Leangoo的看板截图,燃尽图 蔺皓雯 编写博客 蔡晨旸 测试 曾茜 测试 鲁婧楠 测试 杨池宇 测试 成员遇到的问题 队员 问题 吴伟 ...