一、题目

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

二、思路

1、关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3)

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)

2、说明:

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2)

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

可以得出:

f(n) = 2*f(n-1)

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

| 1       ,(n=0 )

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)

三、代码

public class Solution {
public int JumpFloorII(int target) {
if (target <= 0) {
return -1;
} else if (target == 1) {
return 1;
} else {
return 2 * JumpFloorII(target - 1);
}
}
}

----------------------------------------------------------------------------------------------

参考链接:https://www.nowcoder.com/profile/286927/codeBookDetail?submissionId=1522855

剑指offer九之变态跳台阶的更多相关文章

  1. 剑指Offer - 九度1388 - 跳台阶

    剑指Offer - 九度1388 - 跳台阶2013-11-24 03:43 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包 ...

  2. 【剑指offer】09-3变态跳台阶

    原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记,笔记索引连接 1.题目 # 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的 ...

  3. 剑指offer 09:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. /* f(n-1) = f(n-2) + f(n-3) + ... + f(0 ...

  4. 剑指offer 11:变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   解法:使用数学归纳法可得,跳n级台阶的跳法一共有f(n)=2n-1中,即本 ...

  5. 【剑指Offer】10- II. 青蛙跳台阶问题 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 动态规划 日期 题目地址:https: ...

  6. 剑指offer(8)跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目分析 题目很简单,稍微分析就知道这是斐波那契数列,所以可以动态规划来做 a.如果两种跳法,1阶 ...

  7. 【剑指Offer】8、跳台阶

      题目描述:   一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果).   解题思路:   首先考虑最简单的情况,如果只有1级台阶, ...

  8. 剑指offer9:青蛙变态跳台阶,1,2,3……,n。

    1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2. 思路和方法 每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后 ...

  9. 剑指offer【09】- 跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 对于本题,前提只有 一次 1阶或者2阶的跳法. a.如果两种跳法,1阶或者 ...

随机推荐

  1. Linux 的虚拟文件系统(强烈推荐)

    1 引言 Linux 中允许众多不同的文件系统共存,如 ext2, ext3, vfat 等.通过使用同一套文件 I/O 系统 调用即可对 Linux 中的任意文件进行操作而无需考虑其所在的具体文件系 ...

  2. C++STL 容器比较

    Vector的使用场景:比如软件历史操作记录的存储,我们经常要查看历史记录,比如上一次的记录,上上次的记录,但却不会去删除记录,因为记录是事实的描述. deque的使用场景:比如排队购票系统,对排队者 ...

  3. 乌龙之MySQL slave IO status:connecting

    搭建了一个主从,状态一直如下: 检查错误日志报错如下: review搭建过程,语法并没有问题. 检查用户及网络,也没有问题: so?what is the cause ? 等等....貌似上面搭建用的 ...

  4. c#转换XML文件和json对象

    创建.XML文件string xml = @"<?xml version=""1.0"" standalone=""no&q ...

  5. 如何批量下载网站中的超链接(一次性下载网页中所有可能的PDF文件)

    最近公司在做工程项目,实现文件批量下载. 网上找了很久,发现网上的代码都有相似的问题,不过最终还是让我找到了一个符合的项目. 工程: 进行项目文件下载功能分析,弄清楚文件批量下载的原理,提供的数据支持 ...

  6. Unicode和多字节的相互转换

    多字节转Unicode 四步: Step1 #include <iostream> #include "windows.h" using namespace std; ...

  7. TortoiseGit disconnected no supported authentication

    从远程服务器上获取到的工程,用Git没问题,而TortoiseGit报错: Disconnected: No supported authentication methods available(se ...

  8. android-基础编程-Dialog

    Dialog是一种常见的控件. 设置对话框一般步骤如下: 1.实例化dialog 由于AlertDialog的构造函数的关系,不能直接实例化,需要利用Builder来实例化,如 AlertDialog ...

  9. HDU2444 The Accomodation of Students

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  10. 对java高级程序员有益的十本书

    英文原文:http://www.programcreek.com/2013/08/top-books-for-advanced-level-java-developers/ java语言是当今最受欢迎 ...