UVA 1508 - Equipment 状态压缩 枚举子集 dfs
UVA 1508 - Equipment 状态压缩 枚举子集 dfs
ACM
题目地址: option=com_onlinejudge&Itemid=8&category=457&page=show_problem&problem=4254" target="_blank" style="color:rgb(0,136,204); text-decoration:none">UVA 1508 - Equipment
题意:
给出n个5元组,从中选出k组。使得这些组中5个位置,每一个位置上最大数之和最大。
分析:
想了好久...最后还是參考了别人的题解...
只是思路非常棒,值得学习。
因为n的范围为1,10000,所以从n考虑是非常难解出来的。
于是我们从5元组考虑。
每组5元组,最后可能被选择作为和的一部分,就是[11111],即[所有被选中做和]的子集,一共同拥有31种情况。
我们仅仅要预处理这31种情况可能得到的最大的和。
然后dfs遍历子集即可了。
详细见代码。
代码:
/*
* Author: illuz <iilluzen[at]gmail.com>
* File: 1508.cpp
* Create Date: 2014-06-28 20:55:20
* Descripton:
*/ #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = 10010;
int n, t, k, ans;
int m[5], r[N][5], mmax[40]; int dfs(int S, int num) { // find num different subset in S, return the max sum
if (num == 0) {
return 0;
} int tmp = 0;
for (int S0 = S; S0; S0 = (S0-1)&S) {
tmp = max(tmp, mmax[S0] + dfs((S0^S), num - 1));
}
return tmp;
} int main() {
scanf("%d", &t);
while (t--) {
memset(m, 0, sizeof(m)); // input
scanf("%d%d", &n, &k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < 5; j++) {
scanf("%d", &r[i][j]);
m[j] = max(m[j], r[i][j]);
}
} if (k >= 5) { // just the max int sum = 0;
for (int i = 0; i < 5; i++) {
sum += m[i];
}
printf("%d\n", sum); } else { memset(mmax, 0, sizeof(mmax)); for (int i = 0; i < n; i++) { // for every one
for (int S = 0; S <= 31; S++) { // every situation, 00000 to 11111
int tmp = 0;
for (int k = 0; k < 5; k++) {
if (S&(1<<k)) {
tmp += r[i][k];
}
mmax[S] = max(mmax[S], tmp); // update the max of every situation
}
}
}
printf("%d\n", dfs(31, k)); // find the max sum in 11111 }
}
return 0;
}
UVA 1508 - Equipment 状态压缩 枚举子集 dfs的更多相关文章
- codeforces B - Preparing Olympiad(dfs或者状态压缩枚举)
B. Preparing Olympiad You have n problems. You have estimated the difficulty of the i-th one as inte ...
- 状态压缩+枚举 UVA 11464 Even Parity
题目传送门 /* 题意:求最少改变多少个0成1,使得每一个元素四周的和为偶数 状态压缩+枚举:枚举第一行的所有可能(1<<n),下一行完全能够由上一行递推出来,b数组保存该位置需要填什么 ...
- POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)
题目链接:UVA 811 Description Once upon a time, in a faraway land, there lived a king. This king owned a ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- hdu 4033 状态压缩枚举
/* 看别人的的思路 搜索搜不出来我太挫了 状态压缩枚举+好的位置 */ #include<stdio.h> #include<string.h> #define N 20 i ...
- 状态压缩+枚举 POJ 3279 Fliptile
题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...
- UVA 1508 - Equipment dp状态压缩
题意: 已知n个5元组,从中选出k组,使得这些组中5个位置,每个位置上最大数之和最大. 分析:当k>5时,就是n个5元组最大的数之和,当k<5时,就当做5元组,状态压缩,用00000表示 ...
- UVA 11825 状态压缩DP+子集思想
很明显的状态压缩思想了.把全集分组,枚举每个集合的子集,看一个子集是否能覆盖所有的点,若能,则f[s]=max(f[s],f[s^s0]+1).即与差集+1比较. 这种枚举集合的思想还是第一次遇到,果 ...
- UVa 11825 - Hackers' Crackdown DP, 枚举子集substa = (substa - 1)&sta 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
随机推荐
- Java编程的逻辑 (65) - 线程的基本概念
本系列文章经补充和完善,已修订整理成书<Java编程的逻辑>,由机械工业出版社华章分社出版,于2018年1月上市热销,读者好评如潮!各大网店和书店有售,欢迎购买,京东自营链接:http: ...
- SpringMVC JSON数据交互
本节内容: @RequestBody @ResponseBody 请求json,响应json实现 前端可以有很多语言来写,但是基本上后台都是java开发的,除了c++(开发周期长),PHP和#Net( ...
- .NetCore 中如何实现分页以及编写一个URL分页
首先看下效果 这个分页控件不是很完美,体现下思路就行了,有兴趣的可以自己完善,我把代码贴出来,在这边文章中已有一些介绍 代码 public class UosoPagerTagHelper : Tag ...
- hdu 5053 (2014上海网赛L题 求立方和)
题目大意:给你L到N的范围,要求你求这个范围内的所有整数的立方和. Sample Input2 //T1 32 5 Sample OutputCase #1: 36Case #2: 224 # inc ...
- CSS3&HTML5各浏览器支持情况一览表
http://fmbip.com/ CSS3性质(CSS3 Properties) 平台 MAC WIN 浏览器 CHROME FIREFOX OPERA SAFARI CHROME FIREFOX ...
- 历数依赖注入的N种玩法
历数依赖注入的N种玩法 在对ASP.NET Core管道中关于依赖注入的两个核心对象(ServiceCollection和ServiceProvider)有了足够的认识之后,我们将关注的目光转移到编程 ...
- 037 SparkSQL ThriftServer服务的使用和程序中JDBC的连接
一:使用 1.实质 提供JDBC/ODBC连接的服务 服务运行方式是一个Spark的应用程序,只是这个应用程序支持JDBC/ODBC的连接, 所以:可以通过应用的4040页面来进行查看操作 2.启动服 ...
- url后面添加参数,注意&?的添加方式
// 添加参数&key=value 直接输出url function insertParam(key, value) { key = encodeURI(key); value = encod ...
- Redis高可用之集群配置(六)
0.Redis目录结构 1)Redis介绍及部署在CentOS7上(一) 2)Redis指令与数据结构(二) 3)Redis客户端连接以及持久化数据(三) 4)Redis高可用之主从复制实践(四) 5 ...
- Slickflow.NET 开源工作流引擎高级开发(四) -- 硬核编码:代码式快速构建流程图
前言:通过设计器交互来创建流程图是比较常见的方式,这种方式是比较方便业务人员对流程的操作.然而,在需要流程模板,或者技术开发阶段以及一些自动化流程的处理过程中,使用代码快速创建流程图也是一种非常有必要 ...