题目链接:

http://acm.hdu.edu.cn/showproblem.php?pid=1535

Problem Description
In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery.
The transport system is very special: all
lines are unidirectional and connect exactly two stops. Buses leave the
originating stop with passangers each half an hour. After reaching the
destination stop they return empty to the originating stop, where they
wait until the next full half an hour, e.g. X:00 or X:30, where 'X'
denotes the hour. The fee for transport between two stops is given by
special tables and is payable on the spot. The lines are planned in such
a way, that each round trip (i.e. a journey starting and finishing at
the same stop) passes through a Central Checkpoint Stop (CCS) where each
passenger has to pass a thorough check including body scan.

All
the ACM student members leave the CCS each morning. Each volunteer is
to move to one predetermined stop to invite passengers. There are as
many volunteers as stops. At the end of the day, all students travel
back to CCS. You are to write a computer program that helps ACM to
minimize the amount of money to pay every day for the transport of their
employees.

 
Input
The
input consists of N cases. The first line of the input contains only
positive integer N. Then follow the cases. Each case begins with a line
containing exactly two integers P and Q, 1 <= P,Q <= 1000000. P is
the number of stops including CCS and Q the number of bus lines. Then
there are Q lines, each describing one bus line. Each of the lines
contains exactly three numbers - the originating stop, the destination
stop and the price. The CCS is designated by number 1. Prices are
positive integers the sum of which is smaller than 1000000000. You can
also assume it is always possible to get from any stop to any other
stop.
 
Output
For
each case, print one line containing the minimum amount of money to be
paid each day by ACM for the travel costs of its volunteers.
 
Sample Input
2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50
 
Sample Output
46
210
 /*
问题
输入顶点数p和边数q以及q条边
计算并输出顶点1到每个顶点的最短路径花费,再加上每个顶点到1的最短路径花费 解题思路
求1号顶点到其余顶点的最短路径之和不难,Dijkstra求解单源最短路即可,关键是其余顶点到1号顶点的最短路径之和
具体做法是将原图的所有边都反向存储一遍,再跑一边1号顶点到其余顶点的Dijkstra单源最短路就是要求的其余顶点到1号顶
点的最短路径之和。
另外由于顶点和边很多,所以采用邻接表+优先队列优化的Dijkstra算法。
*/
#include<bits/stdc++.h>//HDU G++
const int maxn=1e6+;
const int INF=1e9+; using namespace std; int u[maxn],v[maxn],w[maxn]; struct Edge{
int from,to,dist;
}; struct HeapNode{
int d,u;
bool operator < (const HeapNode& rhs) const {//优先队列,重载<运算符
return d >rhs.d;
}
}; struct Dijkstra{
int n,m;
vector<Edge> edges; //邻接表
vector<int> G[maxn]; //每个节点出发的边编号(从0开始编号)
bool done[maxn]; //是否已经永久编号
int d[maxn]; //s到各个点的距离
int p[maxn]; //最短路中的上一条边 void init(int n){
this->n =n;
for(int i=;i<n;i++) G[i].clear();//清空邻接表
edges.clear(); //清空边表
} void AddEdge(int from,int to,int dist){
//如果是无向图需要将每条无向边存储两边,及调用两次AddEdge
edges.push_back((Edge){from,to,dist});
m=edges.size();
G[from].push_back(m-);
} void dijkstra(int s){//求s到其他点的距离
priority_queue<HeapNode> Q;
for(int i=;i<n;i++) d[i]=INF;
d[s]=; memset(done,,sizeof(done));
Q.push((HeapNode){,s}); while(!Q.empty()){
HeapNode x =Q.top();
Q.pop(); int u=x.u;
if(done[u]) continue;
done[u]=true; for(int i=;i<G[u].size();i++){
Edge& e = edges[G[u][i]];
if(d[e.to] > d[u] + e.dist){
d[e.to] = d[u] + e.dist;
p[e.to] = G[u][i];
Q.push((HeapNode){d[e.to],e.to});
}
}
}
}
}; struct Dijkstra solver; int main()
{
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
solver.init(n);
for(int i=;i<=m;i++){
scanf("%d%d%d",&u[i],&v[i],&w[i]);
u[i]--;//模板中的顶点从0开始
v[i]--;
solver.AddEdge(u[i],v[i],w[i]);
}
solver.dijkstra();
int ans=;
for(int i=;i<solver.n;i++)
ans += solver.d[i]; solver.init(n);
for(int i=;i<=m;i++){
solver.AddEdge(v[i],u[i],w[i]);//清空后反向存储
}
solver.dijkstra();
for(int i=;i<solver.n;i++)
ans += solver.d[i]; printf("%d\n",ans);
}
return ;
}
 

HDU 1535 Invitation Cards(逆向思维+邻接表+优先队列的Dijkstra算法)的更多相关文章

  1. Invitation Cards(邻接表+逆向建图+SPFA)

    Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 17538   Accepted: 5721 Description In ...

  2. hdu 1535 Invitation Cards (最短路径)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  3. HDU 1535 Invitation Cards(最短路 spfa)

    题目链接: 传送门 Invitation Cards Time Limit: 5000MS     Memory Limit: 32768 K Description In the age of te ...

  4. HDU 1535 Invitation Cards(SPFA,及其优化)

    题意: 有编号1-P的站点, 有Q条公交车路线,公交车路线只从一个起点站直接到达终点站,是单向的,每条路线有它自己的车费. 有P个人早上从1出发,他们要到达每一个公交站点, 然后到了晚上再返回点1. ...

  5. HDU 1535 Invitation Cards (POJ 1511)

    两次SPFA. 求 来 和 回 的最短路之和. 用Dijkstra+邻接矩阵确实好写+方便交换.可是这个有1000000个点.矩阵开不了. d1[]为 1~N 的最短路. 将全部边的 邻点 交换. d ...

  6. hdu 1535 Invitation Cards(SPFA)

    Invitation Cards Time Limit : 10000/5000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) T ...

  7. HDU 1535 Invitation Cards (最短路)

    题目链接 Problem Description In the age of television, not many people attend theater performances. Anti ...

  8. HDU - 1535 Invitation Cards 前向星SPFA

    Invitation Cards In the age of television, not many people attend theater performances. Antique Come ...

  9. hdu 1535 Invitation Cards(spfa)

    Invitation Cards Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

随机推荐

  1. 佛祖保佑,永不死机 - /etc/motd文件配置

    /etc/motd (message of to day:每日信息) 一.执行命令: cat <<EOT >/etc/motd _oo0oo_ (| -_- |) \ = / ___ ...

  2. 如何获取帮助———— QQ群讨论摘要

    QQ群对话整理(删除一些简单的回应),对一些重要的地方,我做了一些加粗   宝玉 2015/9/21 1:49:05       这次题目还有个问题就是如何读取Excel,我想对于很多同学来说是个困难 ...

  3. 1*1卷积核在GoogleLeNet中的作用

    1. 实现跨通道的交互和信息整合 1×1的卷积层(可能)引起人们的重视是在NIN的结构中,论文中林敏师兄的想法是利用MLP代替传统的线性卷积核,从而提高网络的表达能力.文中同时利用了跨通道poolin ...

  4. 操作Checkbox标签

    在前端开发中,少不了对Checkbox的操作. 常用的的方法有2个:.is()和.prop()方法.前者是判断 checkbox的状态,选不是未选.而后者为checkbox设置一个值,可以设置chec ...

  5. 2019/4/23 todolist

    近期的任务单子大概是这样吧 bjoi2019改完,写题解 hnoi2019改一些,写题解 找3道网络流写写 写一场agc,写题解 找2道简单计算几何写写

  6. [初识]使用百度AI接口,图灵机器人实现简单语音对话

    一.准备 1.百度ai开放平台提供了优质的接口资源https://ai.baidu.com/  (基本免费) 2.在语音识别的接口中, 对中文来说, 讯飞的接口是很好的选择https://www.xf ...

  7. dapper视频

    dapper是dotnet下的一种小巧快捷的ORM框架,本视频主要讲解了dapper的多库使用,以及常见的操作,如:对象查询.多集合查询,关联查询等,添加.修改.删除等. 视频地址:https://w ...

  8. 不同的最小割(cqoi2016,bzoj4519)(最小割树)

    学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点\(s,t\)不在同一个部分中,则称这个划分是关于\(s,t\)的割.对于带权图来说,将 所有顶 ...

  9. Django(ORM查询2)

    day70 ORM训练专题 :http://www.cnblogs.com/liwenzhou/articles/8337352.html 内容回顾     1. ORM         1. ORM ...

  10. spring cloud学习(一) 服务注册

    首先spring-cloud相关的简介可以去百度搜索,这里就不多说了,这里分享一个翻译spring cloud官网的中文网站spring cloud中文网 这个学习项目的代码放在 https://gi ...