题解

lct维护一个结束时间作为边权的最大生成树,每次出现奇环就找其中权值最小的那条边,删掉的同时还要把它标记上,直到这条边消失

如果有标记则输出No

边权通过建立虚点来维护

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 300005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,T,cnt;
struct E_node {
int u,v,s,t;
}E[MAXN];
vector<int> a[MAXN],b[MAXN];
bool vis[MAXN];
namespace lct {
struct node {
int lc,rc,fa,val,minq,siz;
bool rev;
}tr[MAXN];
#define lc(u) tr[u].lc
#define rc(u) tr[u].rc
#define fa(u) tr[u].fa
#define val(u) tr[u].val
#define minq(u) tr[u].minq
#define rev(u) tr[u].rev
#define siz(u) tr[u].siz
void Init() {
val(0) = minq(0) = 0x7fffffff;
for(int i = 1 ; i <= N ; ++i) {
val(i) = minq(i) = T + 2;
siz(i) = 1;
}
}
void reverse(int u) {
swap(lc(u),rc(u));
rev(u) ^= 1;
}
void pushdown(int u) {
if(rev(u)) {
reverse(lc(u));
reverse(rc(u));
rev(u) = 0;
}
}
void update(int u) {
minq(u) = val(u);
minq(u) = min(minq(u),minq(lc(u)));
minq(u) = min(minq(u),minq(rc(u)));
siz(u) = 1 + siz(lc(u)) + siz(rc(u));
} bool isRoot(int u) {
if(!fa(u)) return true;
else return rc(fa(u)) != u && lc(fa(u)) != u;
}
bool which(int u) {
return rc(fa(u)) == u;
}
void rotate(int u) {
int v = fa(u);
if(!isRoot(v)) {(v == lc(fa(v)) ? lc(fa(v)) : rc(fa(v))) = u;}
fa(u) = fa(v);fa(v) = u;
if(u == lc(v)) {lc(v) = rc(u);fa(rc(u)) = v;rc(u) = v;}
else {rc(v) = lc(u);fa(lc(u)) = v;lc(u) = v;}
update(v);
}
void Splay(int u) {
static int que[MAXN],qr;
qr = 0;int x;
for(x = u ; !isRoot(x) ; x = fa(x)) que[++qr] = x;
que[++qr] = x;
for(int i = qr ; i >= 1 ; --i) pushdown(que[i]);
while(!isRoot(u)) {
if(!isRoot(fa(u))) {
if(which(fa(u)) == which(u)) rotate(fa(u));
else rotate(u);
}
rotate(u);
}
update(u);
}
void Access(int u) {
for(int x = 0 ; u ; x = u , u = fa(u)) {
Splay(u);
rc(u) = x;
update(u);
}
}
void Makeroot(int u) {
Access(u);Splay(u);reverse(u);
}
void Link(int u,int v) {
Makeroot(u);Makeroot(v);Splay(v);fa(v) = u;
}
void Cut(int u,int v) {
Makeroot(u);Access(v);Splay(u);
if(rc(u) == v) {rc(u) = 0;fa(v) = 0;update(u);}
}
int dfs(int u) {
if(val(u) == minq(u)) return u;
pushdown(u);
if(minq(lc(u)) == minq(u)) return dfs(lc(u));
else return dfs(rc(u));
}
int Query(int u,int v) {
Makeroot(u);Access(v);Splay(u);
return dfs(u);
}
int Query_len(int u,int v) {
Makeroot(u);Access(v);Splay(u);
return siz(u);
}
bool Connected(int u,int v) {
Makeroot(u);Access(v);Splay(u);
int p = u;
while(rc(p)) p = rc(p);
if(p == v) return true;
return false;
}
}
using lct::Link;
using lct::Cut;
using lct::Makeroot;
using lct::Query;
using lct::Connected;
using lct::Query_len;
using lct::tr;
void Init() {
read(N);read(M);read(T);
lct::Init();
for(int i = 1 ; i <= M ; ++i) {
read(E[i].u);read(E[i].v);read(E[i].s);read(E[i].t);
a[E[i].s + 1].pb(i);b[E[i].t + 1].pb(i);
tr[i + N].siz = 1;tr[i + N].val = tr[i + N].minq = E[i].t;
}
}
void Solve() {
for(int i = 1 ; i <= T ; ++i) {
int s = a[i].size();
for(int j = 0 ; j < s ; ++j) {
int k = a[i][j];
if(E[k].u == E[k].v) {
if(!vis[k]) {vis[k] = 1;++cnt;}
}
else if(!Connected(E[k].u,E[k].v)) {Link(k + N,E[k].u);Link(k + N,E[k].v);}
else {
int t = Query(E[k].u,E[k].v);
if(tr[t].val > tr[k + N].val) t = k + N;
if((Query_len(E[k].u,E[k].v) / 2) % 2 == 0) {
if(!vis[t - N]) {vis[t - N] = 1;++cnt;}
}
if(t != k + N) {
Cut(t,E[t - N].u);Cut(t,E[t - N].v);
Link(k + N,E[k].u);Link(k + N,E[k].v);
}
}
}
s = b[i].size();
for(int j = 0 ; j < s ; ++j) {
int k = b[i][j];
Cut(E[k].u,k + N);Cut(E[k].v,k + N);
if(vis[k]) {vis[k] = 0;--cnt;}
}
if(cnt) puts("No");
else puts("Yes");
}
} int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}

【BZOJ】4025: 二分图的更多相关文章

  1. bzoj 4025 二分图 分治+并查集/LCT

    bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...

  2. [BZOJ 4025]二分图(线段树分治+带边权并查集)

    [BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...

  3. BZOJ 4025: 二分图 [线段树CDQ分治 并查集]

    4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...

  4. BZOJ 4025 二分图(时间树+并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4025 [题目大意] 给出一张图,有些边只存在一段时间,问在一个每个时间段, 这张图是否 ...

  5. bzoj 4025: 二分图

    Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. 解题报告: ...

  6. bzoj 4025 二分图——线段树分治+LCT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4025 线段树分治,用 LCT 维护链的长度即可.不过很慢. 正常(更快)的方法应该是线段树分 ...

  7. 「bzoj 4025: 二分图」

    题目 显然二分图没有奇环 于是考虑使用并查集维护一下看看是否存在奇环 我们可以考虑加权并查集,维护出\(x\)到\(fa_x\)的实际距离 由于我们只需要考虑奇偶性,于是我们处理出到根的路径异或一下就 ...

  8. 【刷题】BZOJ 4025 二分图

    Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input ...

  9. bzoj 4025 二分图 lct

    题目传送门 题解: 首先关于二分图的性质, 就是没有奇环边. 题目其实就是让你判断每个时段之内有没有奇环. 其次 lct 只能维护树,(反正对于我这种菜鸟选手只会维护树), 那么对于一棵树来说, 填上 ...

  10. BZOJ 4025 二分图 LCT维护最大生成树

    怎么说呢,我也不知道该咋讲,你就手画一下然后 yy 一下就发现这么做是对的. 为什么我明明都想出来了,却还是讲不出来啊~ #include <cstdio> #include <ve ...

随机推荐

  1. 【题解】 [HAOI2016]食物链 (拓扑排序)

    懒得复制,直接贴链接吧 Solution: 水题一道,注意单独一个点的不算在食物链中,也就是\(in[i]==0\) \(out[i]==0\)的点就不计算 Code: //It is coded b ...

  2. 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)

    [BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...

  3. linux command ------ source

    source FileName 等效于. FileName,注 . 和 FileName 有空格 source命令也称为“点命令”,也就是一个点符号(.),作用是在当前bash环境下读取并执行File ...

  4. get请求中的url encode问题

    首先发表一下感慨,Python的requests模块确实太简便,省却了很多的转码等等等等的问题,但这也是缺点,对于我这种基础不好的同学来说让我少知道了许多本来应该知道的东西. url encode: ...

  5. 鸟哥的Linux私房菜——第十二章:档案的压缩与打包

    视频链接: 土豆:http://www.tudou.com/programs/view/GncwT0FJKsQ B站(推荐):http://www.bilibili.com/video/av98857 ...

  6. Bellman-Ford 最短路径算法

    算法证明:http://courses.csail.mit.edu/6.006/spring11/lectures/lec15.pdf 先来看一个这样的图: 这是含有负边权的,如果是用djistra的 ...

  7. hdu 2433 Travel

    http://acm.hdu.edu.cn/showproblem.php?pid=2433 题意: 求删除任意一条边后,任意两点对的最短路之和 以每个点为根节点求一个最短路树, 只需要记录哪些边在最 ...

  8. bzoj千题计划221:bzoj1500: [NOI2005]维修数列(fhq treap)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1500 1.覆盖标记用INF表示无覆盖标记,要求可能用0覆盖 2.代表空节点的0号节点和首尾的两个虚拟 ...

  9. php-fpm的status可以查看汇总信息和详细信息

    nginx.conf 配置文件 server { listen ; server_name localhost; index index.php index.html; root /home/tiny ...

  10. spring中bean配置和注入场景分析

    bean与spring容器的关系 Bean配置信息定义了Bean的实现及依赖关系,Spring容器根据各种形式的Bean配置信息在容器内部建立Bean定义注册表,然后根据注册表加载.实例化Bean,并 ...