【BZOJ】4025: 二分图
题解
lct维护一个结束时间作为边权的最大生成树,每次出现奇环就找其中权值最小的那条边,删掉的同时还要把它标记上,直到这条边消失
如果有标记则输出No
边权通过建立虚点来维护
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define mo 974711
#define MAXN 300005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,M,T,cnt;
struct E_node {
int u,v,s,t;
}E[MAXN];
vector<int> a[MAXN],b[MAXN];
bool vis[MAXN];
namespace lct {
struct node {
int lc,rc,fa,val,minq,siz;
bool rev;
}tr[MAXN];
#define lc(u) tr[u].lc
#define rc(u) tr[u].rc
#define fa(u) tr[u].fa
#define val(u) tr[u].val
#define minq(u) tr[u].minq
#define rev(u) tr[u].rev
#define siz(u) tr[u].siz
void Init() {
val(0) = minq(0) = 0x7fffffff;
for(int i = 1 ; i <= N ; ++i) {
val(i) = minq(i) = T + 2;
siz(i) = 1;
}
}
void reverse(int u) {
swap(lc(u),rc(u));
rev(u) ^= 1;
}
void pushdown(int u) {
if(rev(u)) {
reverse(lc(u));
reverse(rc(u));
rev(u) = 0;
}
}
void update(int u) {
minq(u) = val(u);
minq(u) = min(minq(u),minq(lc(u)));
minq(u) = min(minq(u),minq(rc(u)));
siz(u) = 1 + siz(lc(u)) + siz(rc(u));
}
bool isRoot(int u) {
if(!fa(u)) return true;
else return rc(fa(u)) != u && lc(fa(u)) != u;
}
bool which(int u) {
return rc(fa(u)) == u;
}
void rotate(int u) {
int v = fa(u);
if(!isRoot(v)) {(v == lc(fa(v)) ? lc(fa(v)) : rc(fa(v))) = u;}
fa(u) = fa(v);fa(v) = u;
if(u == lc(v)) {lc(v) = rc(u);fa(rc(u)) = v;rc(u) = v;}
else {rc(v) = lc(u);fa(lc(u)) = v;lc(u) = v;}
update(v);
}
void Splay(int u) {
static int que[MAXN],qr;
qr = 0;int x;
for(x = u ; !isRoot(x) ; x = fa(x)) que[++qr] = x;
que[++qr] = x;
for(int i = qr ; i >= 1 ; --i) pushdown(que[i]);
while(!isRoot(u)) {
if(!isRoot(fa(u))) {
if(which(fa(u)) == which(u)) rotate(fa(u));
else rotate(u);
}
rotate(u);
}
update(u);
}
void Access(int u) {
for(int x = 0 ; u ; x = u , u = fa(u)) {
Splay(u);
rc(u) = x;
update(u);
}
}
void Makeroot(int u) {
Access(u);Splay(u);reverse(u);
}
void Link(int u,int v) {
Makeroot(u);Makeroot(v);Splay(v);fa(v) = u;
}
void Cut(int u,int v) {
Makeroot(u);Access(v);Splay(u);
if(rc(u) == v) {rc(u) = 0;fa(v) = 0;update(u);}
}
int dfs(int u) {
if(val(u) == minq(u)) return u;
pushdown(u);
if(minq(lc(u)) == minq(u)) return dfs(lc(u));
else return dfs(rc(u));
}
int Query(int u,int v) {
Makeroot(u);Access(v);Splay(u);
return dfs(u);
}
int Query_len(int u,int v) {
Makeroot(u);Access(v);Splay(u);
return siz(u);
}
bool Connected(int u,int v) {
Makeroot(u);Access(v);Splay(u);
int p = u;
while(rc(p)) p = rc(p);
if(p == v) return true;
return false;
}
}
using lct::Link;
using lct::Cut;
using lct::Makeroot;
using lct::Query;
using lct::Connected;
using lct::Query_len;
using lct::tr;
void Init() {
read(N);read(M);read(T);
lct::Init();
for(int i = 1 ; i <= M ; ++i) {
read(E[i].u);read(E[i].v);read(E[i].s);read(E[i].t);
a[E[i].s + 1].pb(i);b[E[i].t + 1].pb(i);
tr[i + N].siz = 1;tr[i + N].val = tr[i + N].minq = E[i].t;
}
}
void Solve() {
for(int i = 1 ; i <= T ; ++i) {
int s = a[i].size();
for(int j = 0 ; j < s ; ++j) {
int k = a[i][j];
if(E[k].u == E[k].v) {
if(!vis[k]) {vis[k] = 1;++cnt;}
}
else if(!Connected(E[k].u,E[k].v)) {Link(k + N,E[k].u);Link(k + N,E[k].v);}
else {
int t = Query(E[k].u,E[k].v);
if(tr[t].val > tr[k + N].val) t = k + N;
if((Query_len(E[k].u,E[k].v) / 2) % 2 == 0) {
if(!vis[t - N]) {vis[t - N] = 1;++cnt;}
}
if(t != k + N) {
Cut(t,E[t - N].u);Cut(t,E[t - N].v);
Link(k + N,E[k].u);Link(k + N,E[k].v);
}
}
}
s = b[i].size();
for(int j = 0 ; j < s ; ++j) {
int k = b[i][j];
Cut(E[k].u,k + N);Cut(E[k].v,k + N);
if(vis[k]) {vis[k] = 0;--cnt;}
}
if(cnt) puts("No");
else puts("Yes");
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
return 0;
}
【BZOJ】4025: 二分图的更多相关文章
- bzoj 4025 二分图 分治+并查集/LCT
bzoj 4025 二分图 [题目大意] 有n个点m条边,边会在start时刻出现在end时刻消失,求对于每一段时间,该图是不是一个二分图. 判断二分图的一个简单的方法:是否存在奇环 若存在奇环,就不 ...
- [BZOJ 4025]二分图(线段树分治+带边权并查集)
[BZOJ 4025]二分图(线段树分治+带边权并查集) 题面 给出一个n个点m条边的图,每条边会在时间s到t出现,问每个时间的图是否为一个二分图 \(n,m,\max(t_i) \leq 10^5\ ...
- BZOJ 4025: 二分图 [线段树CDQ分治 并查集]
4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...
- BZOJ 4025 二分图(时间树+并查集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4025 [题目大意] 给出一张图,有些边只存在一段时间,问在一个每个时间段, 这张图是否 ...
- bzoj 4025: 二分图
Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. 解题报告: ...
- bzoj 4025 二分图——线段树分治+LCT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4025 线段树分治,用 LCT 维护链的长度即可.不过很慢. 正常(更快)的方法应该是线段树分 ...
- 「bzoj 4025: 二分图」
题目 显然二分图没有奇环 于是考虑使用并查集维护一下看看是否存在奇环 我们可以考虑加权并查集,维护出\(x\)到\(fa_x\)的实际距离 由于我们只需要考虑奇偶性,于是我们处理出到根的路径异或一下就 ...
- 【刷题】BZOJ 4025 二分图
Description 神犇有一个n个节点的图.因为神犇是神犇,所以在T时间内一些边会出现后消失.神犇要求出每一时间段内这个图是否是二分图.这么简单的问题神犇当然会做了,于是他想考考你. Input ...
- bzoj 4025 二分图 lct
题目传送门 题解: 首先关于二分图的性质, 就是没有奇环边. 题目其实就是让你判断每个时段之内有没有奇环. 其次 lct 只能维护树,(反正对于我这种菜鸟选手只会维护树), 那么对于一棵树来说, 填上 ...
- BZOJ 4025 二分图 LCT维护最大生成树
怎么说呢,我也不知道该咋讲,你就手画一下然后 yy 一下就发现这么做是对的. 为什么我明明都想出来了,却还是讲不出来啊~ #include <cstdio> #include <ve ...
随机推荐
- 神奇:java中float,double,int的值比较运算
float x = 302.01f; System.out.println(x == 302.01); //false System.out.println(x == 302.01f); // ...
- Mac OS X下:TensorBoard可视化问题
花了1,2个小时,Tensorboard Garphs一直不显示,最后发现竟然是多了一个“=”号
- 特别翔实的adaboost分类算法讲解 转的
转https://www.cnblogs.com/litthorse/p/9332370.html 作为(曾)被认为两大最好的监督分类算法之一的adaboost元算法(另一个为前几节介绍过的SVM算法 ...
- 【前端安全】JavaScript防XSS攻击
什么是XSS XSS(Cross Site Scripting),跨站脚本攻击,是一种允许攻击者在另外一个用户的浏览器中执行恶意代码脚本的脚本注入式攻击.本来缩小应该是CSS,但为了和层叠样式(Cas ...
- Java入门系列(六)方法
方法返回多个值 使用集合类 /** * 方法1:使用集合类 (Map以外的集合类也可以随意使用) * 目标:返回一个数组的最大值和最小值 */ public Map<String, Intege ...
- JS 简易控制台插件 [供 博客, 论坛 运行js用]
今天厚着脸皮来推荐下鄙人写的一个小插件吧.看过我博客的应该都熟悉这个插件了,其实就是这货. 这东西是我去年写的,当时水平也不怎么样,不过好歹还是实现了简单功能.我先简单介绍下这东西什么用吧. 因为在 ...
- WebSlides - 轻松制作漂亮的 HTML 幻灯片(演讲稿)
WebSlides 是一个开源的 HTML 幻灯片项目,能够帮助熟悉前端语言的开发者快速制作出效果精美的幻灯片.页面中的每个 <section> 都是一个独立的幻灯片,只需要很少的 CSS ...
- [转载]JavaScript 运行机制详解:再谈Event Loop
https://app.yinxiang.com/shard/s8/sh/b72fe246-a89d-434b-85f0-a36420849b84/59bad790bdcf6b0a66b8b93d5e ...
- Raid 磁盘阵列
raid 原理与区别 raid0至少2块硬盘.吞吐量大,性能好,同时读写,但损坏一个就完蛋 raid1至少2块硬盘.相当镜像,一个存储,一个备份.安全性比较高.但是性能比0弱 raid5至少3块硬盘. ...
- HTTP1.0 HTTP 1.1 HTTP 2.0主要区别
HTTP1.0 HTTP 1.1主要区别 长连接 HTTP 1.0需要使用keep-alive参数来告知服务器端要建立一个长连接,而HTTP1.1默认支持长连接. HTTP是基于TCP/IP协议的 ...