题面

两道题比较像,放在一起写了,后者可以看成前者的加强版

(sto ztb orz)


先看AT那道题

考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子树里。所以对于每个点i,其贡献为$C_n^k-\sum_{v∈son_i}C_{size[v]}^k$,这样我们就得到了一个$O(n^2)$的算法

考虑优化,来列出来总的式子

$ans=n*C_n^k-\sum\limits_{i=1}^n\sum_{v∈son_i}C_{size[v]}^k$

前面的随便算,先不管了。考虑后面,用卷积优化时常见的套路,开个桶$bkt[i]$统计size等于i的情况的个数

$ans'=\sum\limits_{i=1}^n bkt[i] C_{i}^k$

组合数,拆除!

$ans'=\sum\limits_{i=1}^n bkt[i]*i! \frac{1}{k!(i-k)!}$

$k!*ans'=\sum\limits_{i=1}^n bkt[i]*i! \frac{1}{(i-k)!}$

上NTT即可


再来看ER那道题

我们仍然考虑贡献,点i产生贡献有两种方式:

1.作为被选出的点,有$C_{n-1}^{k-1}$种选的方法

2.作为构建虚树时被捉出来的LCA

显然重点在第二种上,我们仍然使用容斥来计算......

额式子太长了,不想写了,搬题解了

来啊,NTT啊(


Code:

Many Easy Problems↓

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int n,nm,t1,t2,cnt,G,Gi;
int p[N],noww[N],goal[N],siz[N];
int rev[N],fac[N],inv[N],a[N],b[N],pw[][];
void Read(int &x)
{
x=; char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch))
x=(x<<)+(x<<)+(ch^),ch=getchar();
}
int Addit(int x,int y)
{
x+=y;
if(x>=mod) x-=mod;
return x;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void Link(int f,int t)
{
noww[++cnt]=p[f];
goal[cnt]=t,p[f]=cnt;
noww[++cnt]=p[t];
goal[cnt]=f,p[t]=cnt;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void DFS(int nde,int fth)
{
siz[nde]=;
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=fth)
{
DFS(goal[i],nde);
a[siz[goal[i]]]++;
siz[nde]+=siz[goal[i]];
}
a[n-siz[nde]]++;
}
void Pre()
{
fac[]=inv[]=;
for(int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[n]=Qpow(fac[n],mod-);
for(int i=n-;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
nm=*n,n=; while(n<=nm) n<<=; G=,Gi=Qpow(G,mod-),nm>>=;
for(int i=;i<=n;i++) rev[i]=(rev[i>>]>>)+(i&)*(n>>);
for(int i=;i<=;i++)
{
pw[i][]=Qpow(G,(mod-)/(<<i));
pw[i][]=Qpow(Gi,(mod-)/(<<i));
}
for(int i=;i<=nm;i++) a[i]=1ll*a[i]*fac[i]%mod,b[i]=inv[nm-i];
}
void Trans(int *arr,int len,int typ)
{
register int i,j,k;
for(i=;i<len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(i=;i<=len;i<<=)
{
int lth=i>>,ort=pw[(int)log2(i)][typ==-];
for(j=;j<len;j+=i)
{
int ori=,tmp;
for(k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
{
int Ni=Qpow(len,mod-);
for(i=;i<=len;i++)
arr[i]=1ll*arr[i]*Ni%mod;
}
}
int main()
{
Read(n);
for(int i=;i<n;i++)
Read(t1),Read(t2),Link(t1,t2);
DFS(,),Pre();
Trans(a,n,),Trans(b,n,);
for(int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%mod;
Trans(a,n,-);
for(int i=;i<=nm;i++)
{
int ans=1ll*C(nm,i)*nm%mod-1ll*a[nm+i]*inv[i]%mod;
printf("%d\n",Addit(ans,mod));
}
return ;
}

两开花↓

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int n,m,nm,t1,t2,cnt,G,Gi;
int p[N],noww[N],goal[N],siz[N];
int rev[N],fac[N],inv[N],a[N],b[N],pw[][];
void Read(int &x)
{
x=; char ch=getchar();
while(!isdigit(ch))
ch=getchar();
while(isdigit(ch))
x=(x<<)+(x<<)+(ch^),ch=getchar();
}
int Addit(int x,int y)
{
x+=y;
if(x>=mod) x-=mod;
return x;
}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
void Link(int f,int t)
{
noww[++cnt]=p[f];
goal[cnt]=t,p[f]=cnt;
noww[++cnt]=p[t];
goal[cnt]=f,p[t]=cnt;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void DFS(int nde,int fth)
{
siz[nde]=;
for(int i=p[nde];i;i=noww[i])
if(goal[i]!=fth)
{
DFS(goal[i],nde);
siz[nde]+=siz[goal[i]];
}
a[n-]++; int tmp=;
for(int i=p[nde];i;tmp++,i=noww[i])
if(goal[i]!=fth) a[n-siz[nde]+siz[goal[i]]]--;
a[n-siz[nde]]+=tmp--(nde!=);
}
void Pre()
{
fac[]=inv[]=;
for(int i=;i<=n;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[n]=Qpow(fac[n],mod-);
for(int i=n-;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
nm=*n,n=; while(n<=nm) n<<=; G=,Gi=Qpow(G,mod-),nm>>=;
for(int i=;i<=n;i++) rev[i]=(rev[i>>]>>)+(i&)*(n>>);
for(int i=;i<=;i++)
{
pw[i][]=Qpow(G,(mod-)/(<<i));
pw[i][]=Qpow(Gi,(mod-)/(<<i));
}
for(int i=;i<=nm;i++) a[i]=1ll*Addit(a[i],mod)*fac[i]%mod,b[i]=inv[nm-i];
}
void Trans(int *arr,int len,int typ)
{
register int i,j,k;
for(i=;i<len;i++)
if(rev[i]>i) swap(arr[rev[i]],arr[i]);
for(i=;i<=len;i<<=)
{
int lth=i>>,ort=pw[(int)log2(i)][typ==-];
for(j=;j<len;j+=i)
{
int ori=,tmp;
for(k=j;k<j+lth;k++,ori=1ll*ori*ort%mod)
{
tmp=1ll*ori*arr[k+lth]%mod;
arr[k+lth]=(arr[k]-tmp+mod)%mod;
arr[k]=(arr[k]+tmp)%mod;
}
}
}
if(typ==-)
{
int Ni=Qpow(len,mod-);
for(i=;i<=len;i++)
arr[i]=1ll*arr[i]*Ni%mod;
}
}
int main()
{
Read(n),Read(m);
for(int i=;i<n;i++)
Read(t1),Read(t2),Link(t1,t2);
DFS(,),Pre();
Trans(a,n,),Trans(b,n,);
for(int i=;i<n;i++) a[i]=1ll*a[i]*b[i]%mod;
Trans(a,n,-);
for(int i=;i<=m;i++)
{
int ans=Addit(1ll*a[nm+i]*inv[i]%mod,1ll*C(nm-,i-)*nm%mod);
printf("%lld\n",1ll*ans*Qpow(C(nm,i),mod-)%mod);
}
return ;
}

解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花的更多相关文章

  1. AtcoderGrandContest 005 F. Many Easy Problems

    $ >AtcoderGrandContest \space 005 F.  Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...

  2. Codeforces 913D - Too Easy Problems

    913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...

  3. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  4. 【CodeForces】913 D. Too Easy Problems

    [题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...

  5. [AT2064] [agc005_f] Many Easy Problems

    题目链接 AtCoder:https://agc005.contest.atcoder.jp/tasks/agc005_f 洛谷:https://www.luogu.org/problemnew/sh ...

  6. Codeforces B. Too Easy Problems

    题目描述: time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...

  7. 【AGC 005F】Many Easy Problems

    Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...

  8. AtCoder - 2064 Many Easy Problems

    Problem Statement One day, Takahashi was given the following problem from Aoki: You are given a tree ...

  9. 【AGC005F】Many Easy Problems FFT 容斥原理

    题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...

随机推荐

  1. springboot整合redis——redisTemplate的使用

    一.概述 相关redis的概述,参见Nosql章节 redisTemplate的介绍,参考:http://blog.csdn.net/ruby_one/article/details/79141940 ...

  2. 20155236范晨歌_Web安全基础实践

    20155236范晨歌_Web安全基础实践 目录 实践目标 WebGoat BurpSuite Injection Flaws Cross-Site Scripting (XSS) 总结 实践目标 ( ...

  3. [Oracle]如何为数据库设置Event(eg: ORA-00235)

    [Oracle]如何为数据库设置Event(eg: ORA-00235) ■ When you use SPFILE, Setting procedure: 1. Check the current ...

  4. typedef你真的理解么?

    typedef,用最简单的话去诠释他,那么就是给类型取别名!!!  但是他并没有你想象的那么简单! 举例: typedef int size;//那么int就有一个别名叫size了,以后就可以 siz ...

  5. 用Micro:bit做交通信号灯

    交通信号灯项目在控制技术中,有点像"Hello world!" 是一个入门级的范例. 对于孩子来说,交通灯跟日常生活息息相关,他们都熟悉,充分知道需要做什么这是一个让孩子开始的好项 ...

  6. Beta阶段事后分析

    1. 设想和目标 1.1 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 我们在Beta阶段任务主要分为两部分,一类是对原功能的扩展,一类是新的博文功能.我们通过规 ...

  7. mybatis mapper使用记录

    insert://插入一条数据//支持Oracle序列,UUID,类似Mysql的INDENTITY自动增长(自动回写)//优先使用传入的参数值,参数值空时,才会使用序列.UUID,自动增长int i ...

  8. C语言版本:顺序表的实现

    seqlist.h #ifndef __SEQLIST_H__ #define __SEQLIST_H__ #include<cstdio> #include<malloc.h> ...

  9. linux 常用命令-用户、用户组管理

    注:本篇只涉及常用命令,全部命令可以通过help帮助查看. (1)type useradd   #查看命令属于内部命令还是外部命令,内部命令是嵌在linux的shell中,外部命令存储在路径中 (2) ...

  10. Jquery封装ajax

    Jquery封装ajax   Load方法     <!-- 将jquery.js导入进来 -->     <script type="text/javascript&qu ...