UVAlive-7040 color(组合数学,二项式反演)
链接:vjudge
题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同。现在问恰好用了 $k$ 种颜色的合法方案数。答案对 $10^9+7$ 取模。$T$ 组数据。
$1\le T\le 300,1\le n,m\le 10^9,1\le k\le 10^6,k\le \min(n,m)$。大多数数据中 $k$ 很小。(smg啊……)
经典的二项式反演例题。
我们令 $f(x)$ 为一共有 $x$ 种颜色,恰好用了 $x$ 种颜色的方案数。
答案就是 ${m\choose k}f(k)$。因为任意选 $k$ 种颜色方案数是一样的。
这……似乎不太好算?
我们再令 $g(x)$ 为一共有 $x$ 种颜色,用了至多 $x$ 种颜色的方案数。
这个就不难算了。第一个格子可以随便填,就是 $x$ 种。后面的格子只要不和上一个颜色相同就行了,就是 $x-1$ 种。
乘法原理一下:$g(x)=x(x-1)^{n-1}$。$x=0$ 时这个式子是 $0$。
但是要注意,$x=n=1$ 时我们这样计算是 $0$,但是实际上是 $1$。为什么?$1\times 0^0$。所以我们要把 $0^0$ 看做 $1$,或者直接特判掉。
(但是不特判也能过,数据太水,这多组数据没用吧)
我们来想一想 $f$ 和 $g$ 有什么关系。很容易发现:$g(x)=\sum\limits^x_{i=0}{x\choose i}f(i)$。因为 $x$ 种颜色中随便选 $i$ 种都可以。
标准二项式反演形式。$f(x)=\sum\limits^x_{i=0}(-1)^{x-i}{x\choose i}g(i)$。
因为 $x\le 10^6$,所以阶乘和逆元都可以预处理,组合数就可以 $O(1)$ 了。此时 $f(x)$ 就可以 $O(x\log n)$ 算了。
现在问题就是算 $m\choose k$ 了。$m$ 达到了惊人的 $10^9$,模数又是个大数……怎么办?
我们发现 $m\choose k$ 可以表示成一种不常用的形式:$\frac{m(m-1)(m-2)...(m-k+1)}{k!}$。
此时分母是预处理过的,分子可以 $O(k)$ 算。这就完事了。
总时间复杂度 $O(Tk\log n)$。因为大多数数据中 $k$ 很小,所以可以跑过。
……这数据范围我给满分……
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int t,n,m,k,fac[maxn],inv[maxn],invfac[maxn];
void init(){ //预处理阶乘,逆元,阶乘的逆元
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
}
int C(int n,int m){
if(n<=) return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod; //n,m很小,可以直接算
int ans=invfac[m]; //分母是m的阶乘
ROF(i,n,n-m+) ans=1ll*ans*i%mod; //暴力乘上分子
return ans;
}
int qpow(int a,int b){ //快速幂
int ans=;
for(;b;b>>=,a=1ll*a*a%mod) if(b&) ans=1ll*ans*a%mod;
return ans;
}
int g(int x){
if(x== && n==) return ; //特判掉x=n=1
return 1ll*x*qpow(x-,n-)%mod;
}
int f(int x){
int ans=;
FOR(i,,x){
int v=1ll*C(x,i)*g(i)%mod;
if((x-i)&) ans=(ans-v+mod)%mod; //(-1)^(x-i)
else ans=(ans+v)%mod;
}
return ans;
}
int main(){
init();
t=read();
FOR(tt,,t){
n=read();m=read();k=read();
printf("Case #%d: %d\n",tt,int(1ll*C(m,k)*f(k)%mod)); //记得乘上C(m,k)
}
}
二项式反演
UVAlive-7040 color(组合数学,二项式反演)的更多相关文章
- 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...
- 2014ACM/ICPC亚洲区西安站现场赛 F color(二项式反演)
题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k < ...
- [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演
分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...
- UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)
题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...
- UVALive 7040 Color
题目链接:LA-7040 题意为用m种颜色给n个格子染色.问正好使用k种颜色的方案有多少. 首先很容易想到的是\( k * (k-1)^{n-1}\),这个算出来的是使用小于等于k种颜色给n个方格染色 ...
- 组合数+容斥原理 UVALive 7040 Color(14西安F)
题目传送门 题意:n盆花涂色,相邻不能涂相同的颜色,从m中颜色选取k种颜色涂,保证正好有k种颜色 分析:从m中颜色选取k种就是C (m, k),然后第一个有k种选择,之后的都有k-1种选择,这样是不超 ...
- cf111D Petya and Coloring 组合数学,二项式反演
http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the numbe ...
- ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))
终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...
- [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...
随机推荐
- Redis Replication
Replication 官网说明:http://www.redis.io/topics/replication Redis使用异步复制; 一个Master可以有多个Slaves; Slaves可以接收 ...
- Eclipse安装Git插件(在线和离线)
在线安装: help-->install new software-->add location就是安装的地址:http://download.eclipse.org/egit/updat ...
- Java面试题,Java三大特性之一——多态的理解
首先我们知道Java是一门面向对象的语言 面向对象三大特性,封装.继承.多态. 封装.继承.多态 ↓ 无论是学习路线,还是众人的口语习惯,都是按照这个这样进行排序,这是有原因的.因为封装好了才能继承, ...
- 一条insert语句插入数据库
CREATE TABLE test_main ( id INT NOT NULL, value VARCHAR(10), PRIMARY KEY(id) ); oracle插入方式:INSERT IN ...
- Java中枚举的写法和用法
在公司代码中,用了一大堆的枚举,看得我好懵逼.下面开始看看枚举怎么写和怎么用. 一.枚举的写法 关于枚举的写法,网上好多这方面的知识.这里直接贴一个我自己写的枚举类的代 ...
- MFC如何为程序添加图标
1.找几幅Ico格式的图片,可以在电脑中查找.ico一般都会找到.然后将ico文件放在工程目录下的res文件夹下. 2.点击菜单栏->编辑->添加资源->导入,选择res文件夹中将要 ...
- 第五节 HTML&CSS -- 关于浮动和清除浮动的解说,以及两个大坑不要踩
1.随便唠叨几句 这一节课我会对浮动元素和怎样清除浮动相关的技术进行一个讲解,同时,我会列举一些我们前端开发中常见的坑,希望大家以后不要在这些地方犯错.在开始今天的课程之前,有一个东西我需要先讲一 ...
- 一、Django前后端交互之Ajax和跨域问题
一.Ajax介绍 1.概述 AJAX 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术.AJAX(Asynchronous Javascript And XML)翻译成中文就是“异步Jav ...
- STM8S——8位基本定时器(TIM4)
简介:该定时器由一个带可编程预分频器的8位自动重载的向上计数器所组成,它可以用来作为时基发生器,具有溢出中断功能. 主要功能: (1)8位向上计数的自动重载计数器: (2)3位可编程的预分配器(可在运 ...
- Asp.Net_Mvc3.5语法_<%%>的用法
一. <%%>这种格式实际上就是和asp的用法一样的,只是asp中里面是vbscript或 者javascript代码,而在asp.net中用的是.net平台下支持的语言.特别 注意:服务 ...