链接:vjudge

题目大意:有一排方格共 $n$ 个,现在有 $m$ 种颜色,要给这些方格染色,要求相邻两个格子的颜色不能相同。现在问恰好用了 $k$ 种颜色的合法方案数。答案对 $10^9+7$ 取模。$T$ 组数据。

$1\le T\le 300,1\le n,m\le 10^9,1\le k\le 10^6,k\le \min(n,m)$。大多数数据中 $k$ 很小。(smg啊……)


经典的二项式反演例题。

我们令 $f(x)$ 为一共有 $x$ 种颜色,恰好用了 $x$ 种颜色的方案数。

答案就是 ${m\choose k}f(k)$。因为任意选 $k$ 种颜色方案数是一样的。

这……似乎不太好算?

我们再令 $g(x)$ 为一共有 $x$ 种颜色,用了至多 $x$ 种颜色的方案数。

这个就不难算了。第一个格子可以随便填,就是 $x$ 种。后面的格子只要不和上一个颜色相同就行了,就是 $x-1$ 种。

乘法原理一下:$g(x)=x(x-1)^{n-1}$。$x=0$ 时这个式子是 $0$。

但是要注意,$x=n=1$ 时我们这样计算是 $0$,但是实际上是 $1$。为什么?$1\times 0^0$。所以我们要把 $0^0$ 看做 $1$,或者直接特判掉。

(但是不特判也能过,数据太水,这多组数据没用吧)

我们来想一想 $f$ 和 $g$ 有什么关系。很容易发现:$g(x)=\sum\limits^x_{i=0}{x\choose i}f(i)$。因为 $x$ 种颜色中随便选 $i$ 种都可以。

标准二项式反演形式。$f(x)=\sum\limits^x_{i=0}(-1)^{x-i}{x\choose i}g(i)$。

因为 $x\le 10^6$,所以阶乘和逆元都可以预处理,组合数就可以 $O(1)$ 了。此时 $f(x)$ 就可以 $O(x\log n)$ 算了。

现在问题就是算 $m\choose k$ 了。$m$ 达到了惊人的 $10^9$,模数又是个大数……怎么办?

我们发现 $m\choose k$ 可以表示成一种不常用的形式:$\frac{m(m-1)(m-2)...(m-k+1)}{k!}$。

此时分母是预处理过的,分子可以 $O(k)$ 算。这就完事了。

总时间复杂度 $O(Tk\log n)$。因为大多数数据中 $k$ 很小,所以可以跑过。

……这数据范围我给满分……

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=,mod=;
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int t,n,m,k,fac[maxn],inv[maxn],invfac[maxn];
void init(){ //预处理阶乘,逆元,阶乘的逆元
fac[]=fac[]=inv[]=invfac[]=invfac[]=;
FOR(i,,){
fac[i]=1ll*fac[i-]*i%mod;
inv[i]=mod-1ll*(mod/i)*inv[mod%i]%mod;
invfac[i]=1ll*invfac[i-]*inv[i]%mod;
}
}
int C(int n,int m){
if(n<=) return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod; //n,m很小,可以直接算
int ans=invfac[m]; //分母是m的阶乘
ROF(i,n,n-m+) ans=1ll*ans*i%mod; //暴力乘上分子
return ans;
}
int qpow(int a,int b){ //快速幂
int ans=;
for(;b;b>>=,a=1ll*a*a%mod) if(b&) ans=1ll*ans*a%mod;
return ans;
}
int g(int x){
if(x== && n==) return ; //特判掉x=n=1
return 1ll*x*qpow(x-,n-)%mod;
}
int f(int x){
int ans=;
FOR(i,,x){
int v=1ll*C(x,i)*g(i)%mod;
if((x-i)&) ans=(ans-v+mod)%mod; //(-1)^(x-i)
else ans=(ans+v)%mod;
}
return ans;
}
int main(){
init();
t=read();
FOR(tt,,t){
n=read();m=read();k=read();
printf("Case #%d: %d\n",tt,int(1ll*C(m,k)*f(k)%mod)); //记得乘上C(m,k)
}
}

二项式反演

UVAlive-7040 color(组合数学,二项式反演)的更多相关文章

  1. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  2. 2014ACM/ICPC亚洲区西安站现场赛 F color(二项式反演)

    题意:小球排成一排,从m种颜色中选取k种颜色给n个球上色,要求相邻的球的颜色不同,求可行的方案数,答案模1e9+7.T组数据,1<= n, m <= 1e9, 1 <= k < ...

  3. [LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演

    分析 感觉这道题的计数方法好厉害.. 一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率. 考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\ ...

  4. UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)

    题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...

  5. UVALive 7040 Color

    题目链接:LA-7040 题意为用m种颜色给n个格子染色.问正好使用k种颜色的方案有多少. 首先很容易想到的是\( k * (k-1)^{n-1}\),这个算出来的是使用小于等于k种颜色给n个方格染色 ...

  6. 组合数+容斥原理 UVALive 7040 Color(14西安F)

    题目传送门 题意:n盆花涂色,相邻不能涂相同的颜色,从m中颜色选取k种颜色涂,保证正好有k种颜色 分析:从m中颜色选取k种就是C (m, k),然后第一个有k种选择,之后的都有k-1种选择,这样是不超 ...

  7. cf111D Petya and Coloring 组合数学,二项式反演

    http://codeforces.com/contest/111/problem/D Little Petya loves counting. He wants to count the numbe ...

  8. ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))

    终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...

  9. [模板] 容斥原理: 二项式反演 / Stirling 反演 / min-max 容斥 / 子集反演 / 莫比乌斯反演

    //待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \ch ...

随机推荐

  1. iOS Swift WisdomScanKit二维码扫码SDK,自定义全屏拍照SDK,系统相册图片浏览,编辑SDK

    iOS Swift WisdomScanKit 是一款强大的集二维码扫码,自定义全屏拍照,系统相册图片编辑多选和系统相册图片浏览功能于一身的 Framework SDK [1]前言:    今天给大家 ...

  2. 20155308《网络对抗》Exp4 恶意代码分析

    20155308<网络对抗>Exp4 恶意代码分析 实践说明 实践目标 是监控你自己系统的运行状态,看有没有可疑的程序在运行. 是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件: ...

  3. 20155331《网路对抗》Exp8 WEB基础实践

    20155331<网路对抗>Exp8 WEB基础实践 基础问题回答 什么是表单 表单在网页中主要负责数据采集功能.一个表单有三个基本组成部分: 表单标签,这里面包含了处理表单数据所用CGI ...

  4. 浅谈Spring中的事务回滚

        使用Spring管理事务过程中,碰到过一些坑,因此也稍微总结一下,方便后续查阅. 1.代码中事务控制的3种方式 编程式事务:就是直接在代码里手动开启事务,手动提交,手动回滚.优点就是可以灵活控 ...

  5. EZ 2018 03 23 NOIP2018 模拟赛(五)

    链接:http://211.140.156.254:2333/contest/65 这次Rating重回Rank18,我是20的守门员(滑稽) 这次题目和数据普遍偏水,我T2打错了一个变量名竟然过了所 ...

  6. S5PV210 DDR2初始化 28个步骤总结

    看了一套视频,感觉DDR这个部分将的非常细致也很好,于是把视频内容花了一个多星期作了总结. 这个视频就是不知道是谁讲的,做好事不留名啊---那位知道告诉我哈-- 平台:S5PV210 DDR: 兼容 ...

  7. 【个人】爬虫实践,利用xpath方式爬取数据之爬取虾米音乐排行榜

    实验网站:虾米音乐排行榜 网站地址:http://www.xiami.com/chart  难度系数:★☆☆☆☆ 依赖库:request.lxml的etree (安装lxml:pip install ...

  8. [LOJ#6039].「雅礼集训 2017 Day5」珠宝[决策单调性]

    题意 题目链接 分析 注意到本题的 \(C\) 很小,考虑定义一个和 \(C\) 有关的状态. 记 \(f(x,j)\) 表示考虑到了价格为 \(x\) 的物品,一共花费了 \(j\) 元的最大收益. ...

  9. HDFS-异常大全-《每日五分钟搞定大数据》

    点击看<每日五分钟搞定大数据>完整思维导图以及所有文章目录 问题1:Decomminssioning退役datanode(即删除节点) 1.配置exclude: <name>d ...

  10. 命令行启用IIS Express

    我们在调试WEB程序的时候可以把本地web程序挂载到本地IIS,然后访问程序,通过附加进程的方式(w3wp)来调试程序(个人非常喜欢的一种调试方式),还有一种比较传统的方式就是通过VS自带的F5来执行 ...